Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

«Уфимский государственный нефтяной технический университет»

Кафедра: «Физическая и органическая химия»

Ациклические непредельные углеводороды диены

Ст. гр. БТП-09-01 Антипин А.

Доцент Калашников С.М.

Диеновые углеводороды (алкадиены)

Получение диенов

Физические свойства диенов

Химические свойства диенов

Применение диенов

Номенклатура

Диеновые углеводороды (алкадиены)

Диеновые углеводороды или алкадиены - это непредельные углеводороды, содержащие две двойные углерод - углеродные связи. Общая формула алкадиенов CnH2n-2.

В зависимости от взаимного расположения двойных связей диены подразделяются на три типа:

1) углеводороды с кумулированными двойными связями, т.е. примыкающими к одному атому углерода. Например, пропадиен или аллен CH2=C=CH2;

2) углеводороды с изолированными двойными связями, т.е разделенными двумя и более простыми связями. Например, пентадиен -1,4 CH2=CH-CH2-CH=CH2;

3) углеводороды с сопряженными двойными связями, т.е. разделенными одной простой связью. Например, бутадиен -1,3 или дивинил CH2=CH-CH=CH2, 2-метилбутадиен -1,3 или изопрен

Получение диенов

Углеводороды с сопряженными двойными связями получают:

1) дегидрированием алканов, содержащихся в природном газе и газах нефтепереработки, при пропускании их над нагретым катализатором

2) дегидрированием и дегидратацией этилового спирта при пропускании паров спирта над нагретыми катализаторами (метод акад. С.В.Лебедева)

Физические свойства диенов

Бутадиен -1,3 - легко сжижающийся газ с неприятным запахом, t°пл. = -108,9°C, t°кип. = -4,5°C; растворяется в эфире, бензоле, не растворяется в воде.

2- Метилбутадиен -1,3 - летучая жидкость, t°пл. = -146°C, t°кип. = 34,1°C; растворяется в большинстве углеводородных растворителях, эфире, спирте, не растворяется в воде.

Химические свойства диенов

Атомы углерода в молекуле бутадиена-1,3 находятся в sp2 - гибридном состоянии, что означает расположение этих атомов в одной плоскости и наличие у каждого из них одной p- орбитали, занятой одним электроном и расположенной перпендикулярно к упомянутой плоскости.

Схематическое изображение строения молекул дидивинила (а) и вид модели сверху (b).

Перекрывание электронных облаков между С1-С2 и С3-С4 больше, чем между С2-С3.

p- Орбитали всех атомов углерода перекрываются друг с другом, т.е. не только между первым и вторым, третьим и четвертым атомами, но и также между вторым и третьим. Отсюда видно, что связь между вторым и третьим атомами углерода не является простой s- связью, а обладает некоторой плотностью p- электронов, т.е. слабым характером двойной связи. Это означает, что s- электроны не принадлежат строго определенным парам атомов углерода. В молекуле отсутствуют в классическом понимании одинарные и двойные связи, а наблюдается делокализация p- электронов, т.е. равномерное распределение p- электронной плотности по всей молекуле с образованием единого p- электронного облака.

Взаимодействие двух или нескольких соседних p- связей с образованием единого p- электронного облака, в результате чего происходит передача взаимовлияния атомов в этой системе, называется эффектом сопряжения.

Таким образом, молекула бутадиена -1,3 характеризуется системой сопряженных двойных связей.

Такая особенность в строении диеновых углеводородов делает их способными присоединять различные реагенты не только к соседним углеродным атомам (1,2- присоединение), но и к двум концам сопряженной системы (1,4- присоединение) с образованием двойной связи между вторым и третьим углеродными атомами. Отметим, что очень часто продукт 1,4- присоединения является основным.

Рассмотрим реакции галогенирования и гидрогалогенирования сопряженных диенов.

Как видно, реакции бромирования и гидрохлорирования приводят к продуктам 1,2- и 1,4- присоединения, причем количество последних зависит, в частности, от природы реагента и условий проведения реакции.

Важной особенностью сопряженных диеновых углеводородов является, кроме того, их способность вступать в реакцию полимеризации. Полимеризация, как и у олефинов, осуществляется под влиянием катализаторов или инициаторов.

Она может протекать по схемам 1,2- и 1,4- присоединения.

Применение диенов

Алкадиены применяются для производства каучука.

В современной промышленности важную роль играю эластомеры - высокомолекулярные вещества, сохраняющие эластичность в широком интервале температур Эластомеры легко изменяют фирму при внешнем воздействии, а после окончания воздействия принимают исходную форму. Типичными эластомерами являются каучуки.

Натуральный каучук. Натуральный каучук получается из природного сырья -- сока дерева гевеи, распространенного в Южной Америке (главным образом в Бразилии). На воздухе белый млечный сок этого дерева быстро твердеет и темнеет, превращаясь в эластичную массу.

Натуральный каучук представляет собой полимер изопрена.

Синтетический каучук. Большие потребности промышленности в каучуке обусловили разработку синтетических способов его получения.

В СССР синтетический каучук начал впервые производиться в промышленных масштабах в 19321 по способу С. В. Лебедева. Этот способ заключался в полимеризации бутадиена-1,3 в присутствии металлического натрия в качестве катализатора:

nСН2 = СН - СН =CH2 ? (- СН2 - СН = СН - СН2 -)n

бутадиен-1,3 бутадиеновый каучук

(полибуталиен)

Такой каучук уступает по свойствам натуральному: он менее эластичен, изделия из него быстрее изнашиваются.

Каучук используют в производстве шин, резинотехнических изделий, клеев, эбонита, медицинских и бытовых изделий.

Для превращения каучука в резину проводят вулканизацию каучука. Резина отличается от каучука большей эластичностью и прочностью. Она устойчивее к действию температуры и растворителей.

диеновый углеводород физический химический каучук

Номенклатура

Главную цепь в диенах выбирают так, чтобы она содержала обе двойные связи, и нумеруют с того конца, при котором сумма номеров положений двойных связей минимальна. В названии соответствующего алкана окончание -ан заменяется на -диен.

Размещено на Allbest.ru

Подобные документы

    Непредельные соединения, с двумя двойными связями в молекуле - диеновые углеводороды. Связь между строением диеновых углеводородов и их свойствами. Способы получения девинила, изопрена, синтетического каучука. Органические галогениды и их классификация.

    лекция , добавлен 19.02.2009

    Характеристика алкадиенов как непредельных углеводородов. Общая формула алкадиенов. Основне формулы получения алкадиенов: каталитическое двухстадийное дегидрирование алканов, синтез дивинила по Лебедеву, дегидратация гликолей, дегидрогалогенирование.

    презентация , добавлен 22.04.2011

    Номенклатура, изомерия, классификация и физические свойства диеновых углеводородов и органических галогенидов. Способы получения и химические свойства. Сущность диенового синтеза. Натуральные и синтетические каучуки, их применение в строительстве.

    контрольная работа , добавлен 27.02.2009

    Типы диенов: изолированные, сопряженные и куммулированные. Способ получения дивинила из этанола. Строение сопряженных диенов. Причины затрудненного вращения в молекуле бутадиена. Реакции полимеризации. Реакционная способность кумулированных алкадиенов.

    контрольная работа , добавлен 05.08.2013

    Ароматические углеводороды: общая характеристика. Номенклатура и изомерия, физические и химические свойства ароматических углеводородов. Механизм реакций электрофильного и нуклеофильного замещения в ароматическом ряду. Применение аренов, их токсичность.

    реферат , добавлен 11.12.2011

    Понятие, основные физические и химические свойства циклоалканов как насыщенных моноциклических углеводородов, алициклических соединений. Исследование примеров данных соединений: бензола, циклогексана: их схемы и элементы, применение и побочные действия.

    презентация , добавлен 05.02.2014

    Исследование состава и структуры алкенов как ациклических непредельных углеродов, содержащих одну двойную связь С=С. Процесс получения алкенов и свойства цис-транс-изомерии в ряду алкенов. Анализ физических и химических свойств алкенов и их применение.

    реферат , добавлен 11.01.2011

    Особенности строения предельных углеводородов. Номенклатура углеводородов ряда метана. Химические свойства предельных углеводородов, их применение. Структурные формулы циклопарафинов (циклоалканов), их изображение в виде правильных многоугольников.

    контрольная работа , добавлен 24.09.2010

    Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.

    презентация , добавлен 16.03.2011

    Общая характеристика группы. Бериллий и магний. История, распространенность, получение, особенности, физические свойства, применение щелочноземельных металлов. Химические свойства щелочноземельных металлов и их соединений.

Диеновые углеводороды (диолефины, алкадиены, диены) - насыщенные углеводороды, в структуре которых есть две двойные связи. Учитывая химическую структуру, алкадиены разделяются на три типа: I тип - диолефины с кумулированными связями (СН2ССН2); II тип - алкадиены со спряженными (конъюгированными) связями; двойные связи в структуре диена разделены простой связью (Н2ССНСНСН2); III тип - диены с изолированными связями (Н2ССН2СН2СНСН2).

Диеновые углеводороды: общая характеристика

Из трех типов диенов наибольший интерес для химической промышленности представляют алкадиены II типа. С помощью электронографии установлено, что двойные связи в молекуле бутадиена между С1 и С4 длиннее, чем в молекуле этилена.

Диеновые углеводороды: изомерия

Для данных характерно два вида изомерии - пространственная (стереоизомерия) и структурная. Первый вид - изомерия строения углеводородной цепи, которая может быть прямой или разветвленной. Второй тип изомерии обусловлен пространственной локализацией атомов и атомных групп возле двойных связей. Таким образом, образуются транс- и цис-изомеры диенов. Например, для диена с молекулярной формулой С5Н8 существует три структурных изомера:

СН2СНСН2СНСН2; СН2С(СН3)СНСН2; СН3СНСНСН2.

Диеновые углеводороды: номенклатура

Для названия диенов пользуются двумя номенклатурами - исторической (например, дивини, ален) и ИЮПАК (Международный союз теоритической и прикладной химии). Согласно номенклатуре ИЮПАК, сначала называется соответствующий диену алкан, в названии которого суффикс «ан» заменяют на «диен», после этого цифрами указывается место локализации двойных связей в углеводородной цепи. Нумерацию углеводородной цепи проводят так, чтобы цифры имели наименьшее значение. Приведенные выше формулы диенов по номенклатуре ИЮПАК будут называться так: 1,4-пентадиен; 2-метил-1,3-бутадиен; 1,3-пентадиен.

Существует целый ряд промышленных и лабораторных методов синтеза диенов. Основными из них являются деполимеризация природного каучука (сухая перегонка), метод каталитической дегидратации алканов, метод дегидратации одноатомных насыщенных спиртов.

Бутадиен - ценное сырье для получения (бутадиен-нитрильного, бутадиенового, стирольного), а также перхлорвинила. Изопрен - вещество с характерным запахом. Впервые изопрен получен из натурального каучука методом сухой перегонки. Изопрен получают также путем дегидратации изопентана. Используют для получения синтетических каучуков, лекарственных и ароматических веществ.

Каучуки - эластичный и очень крепкий материал органического происхождения, который получают из природного сырья и синтетическими способами (синтетический). Основой каучука являются молекулы диенов со спряженными двойными связями. В процессе обработки этого материала серой и нагревания (вулканизации) образуется резина. Каучуки - очень важное сырье для производства шин и камер, изоляционных полосок, резиновых рукавичек, обуви и других предметов, используемых в промышленности, хозяйстве, быту, медицине и ветеринарии.

Этиленовые углеводороды в своей структуре имеют одну двойную связь. Иногда эти соединения называют олефинами, поскольку низшие газообразные алкены, вступая в реакции с хлором или бромом, образуют маслянистые соединения, которые нерастворимы в воде.

Ацетиленовые углеводороды (алкины) - соединения, в которых содержится одна тройная связь. Наибольшее значение из всех алкинов имеет ацетилен, который получают при взаимодействии с водой. Этот газ используется при автогенном сваривании и резке металлов. Ацетилен - ценное сырье для этилового спирта, ацетальдегида, винилацетилена, ацетатной кислоты, бензола, трихлорэтана, акрилнитрила.

Лекция № 14

· Алкадиены. Классификация, номенклатура, типы диенов. Строение 1,3-диенов: сопряжение p-связей, понятие о делокализованных связях, использование предельных структур для описания строения бутадиена, качественные критерии их относительного вклада, энергия сопряжения. Физические свойства сопряженных алкадиенов, их спектральные характеристики и способы идентификации.

· Методы получения сопряженных диенов: метод Лебедева, дегидратацией спиртов, из бутан-бутеновой фракции нефти.

Диены - соединения, содержащие в молекуле две двойные углерод-углеродные связи. Общая формула гомологического ряда C n H 2 n-2 .

В зависимости от расположения двойных углерод-углеродных связей, диены делят на три группы:

1) диены с кумулированными (примыкающими) двойными связями, например, СН 2 =С=СН 2 (пропадиен, аллен);

2) диены с сопряженными двойными связями, например, СН 2 =СН-СН=СН 2 (бутадиен-1,3);

3) диены с изолированными двойными связями, например,СН 2 =СН-СН 2 -СН=СН 2 (пентадиен-1,4).

Диены с кумулированными двойными связями являются изомерами алкинов (например, пропин и пропадиен), в которые они превращаются при нагревании в присутствии щелочей.

Диены с изолированными связями по своему строению и химическим свойствам практически не отличаются от алкенов. Для них характерны реакции электрофильного присоединения, которые могут проходить ступенчато.

Наибольшее теоретическое и прикладное значение имеют сопряженные диены.

Вообще, в органической химии системами с сопряженными связями называют такие молекулы, в которых кратные связи разделены одной простой (s-) связью. Простейшая из сопряженных систем - бутадиен-1,3 или С 4 Н 6 . Исходя из изложенных ранее представлений о строении одинарной, двойной и тройной связи, строение бутадиена не выглядит сложным. Четыре атома углерода находятся в sp 2 -гибридизованном состоянии и связаны с тремя соседними атомами s-связями. Кроме того, перекрывание негибридизованных 2р -орбиталей между С-1 и С-2, а также между С-3 и С-4 атомами углерода приводит к образованию двух сопряженных p-связей.

Однако строение молекулы бутадиена значительно сложнее. Установлено, что все атомы углерода и водорода лежат в одной плоскости, в которой находятся также все s-связи. Негибридизованные p-орбитали перпендикулярны этой плоскости. Расстояние между углеродами С-1 и С-2, как и между атомами С-3 и С-4, равно 0,134 нм, что немного больше длины двойной связи в этилене (0,133 нм), а расстояние между атомами С-2 и С-3, равное 0,147 нм, - значительно меньше s-связи в алканах (0,154 нм).

Рис. 14.1. Длина связей (а), перекрывание р -орбиталей (б) и делокализованная МО (в) молекулы бутадиена-1,3


Экспериментальные данные показали, что бутадиен-1,3 устойчивее, чем ожидалось. Энергию непредельных соединений часто оценивают по теплоте гидрирования. Присоединение молекулы водорода к двойной углерод-углеродной связи, т.е. превращение непредельного соединения в насыщенное, сопровождается выделением тепла. При гидрировании изолированной двойной связи выделяется около 127 кДж/моль. Следовательно, при гидрировании двух двойных связей следует ожидать выделения 254 кДж/моль. Именно столько тепла выделяется при гидрировании пентадиена-1,4 – соединения с изолированными двойными связями. Гидрирование же бутадиена-1,3 дало неожиданный результат. Теплота гидрирования оказалась всего 239 кДж/моль, что на 15 кДж/моль меньше ожидаемой. Это означает, что бутадиен содержит меньше энергии (более устойчив), чем ожидалось.

Экспериментальные факты могут быть объяснены только особенностями строения бутадиена (да и вообще сопряженных диенов).

Алканы, алкены и алкины построены за счет локализованных связей. Такая связь образуется при перекрывании двух атомных орбиталей (АО), а образующаяся связывающая молекулярная орбиталь (МО) является двухцентровой и охватывает два ядра.

В некоторых веществах перекрывание р -орбиталей нескольких атомов образует несколько МО, охватывающих более двух атомов. В этом случае говорят о делокализованных связях, которые характерны как раз для сопряженных систем.

Для объяснения повышенной стабильности и нестандартных длин связей в молекуле бутадиена-1,3 следует подробно рассмотреть четыре sp 2 -гибридизованных атома углерода, имеющихся в любом сопряженном диене.

В классических химических формулах каждая черточка означает локализованную химическую связь, т.е. пару электронов. Связи между первым и вторым, а также третьим и четвертым углеродными атомами обозначают как двойную, а между вторым и третьим углеродами - как одинарную (структура А). Перекрывание р -орбиталей, приводящее к образованию двух p-связей, показано на рис. 14.1.а.

Такое рассмотрение абсолютно не учитывает тот факт, что р -электроны атомов С-2 и С-3 также могут перекрываться. Такое взаимодействие показано с помощью следующей формулы Б:

Дуга указывает на формальную связь между первым и четвертым углеродами диенового фрагмента. Использование для описания строения молекулы бутадиена формулы Б позволяет объяснить уменьшенную длину связи С-2 – С-3. Однако простейшие геометрические расчеты показывают, что расстояние между первым и четвертым углеродными атомами 0,4 нм, что значительно превышает длину простой связи.

Поскольку описание структурных формул на бумаге очень ограничено – валентные черточки показывают лишь локализованные связи, – Л. Полинг предложил использовать для сохранения концепции ковалентных связей и привычного изображения молекул так называемую теорию резонанса (метод валентных схем).

Основные принципы этой концепции:

· Если молекула не может быть правильно отображена одной структурной формулой, то для ее описания используется набор граничных (канонических, резонансных) структур.

· Реальная молекула не может быть удовлетворительно представлена ни одной из граничных структур, а представляет собой их суперпозицию (резонансный гибрид).

· Реальная молекула (резонансный гибрид) стабильнее, чем любая из резонансных структур. Увеличение стабильности реальной молекулы называют энергией сопряжения (делокализации, резонанса).

При написании граничных структур следует выполнять следующие требования:

· Геометрия ядерных конфигураций граничных структур должна быть одинаковой. Это означает, что при написании канонических структур может изменять только расположение электронов p-, но не s- связей.

· Все канонические структуры должны быть «структурами Льюиса», т.е., например, углерод не может быть пятиковалентным.

· Все атомы, участвующие в сопряжении, должны лежать в одной плоскости или близко к одной плоскости. Условие копланарности вызвано необходимостью максимального перекрывания p -орбиталей.

· Все граничные структуры должны иметь одинаковое количество неспаренных электронов. Поэтому бирадикальная формула Г бутадиена не является канонической.

Ниже представлены граничные структуры бутадиена (А и Б) и их суперпозиция. Пунктирная линия показывает делокализацию p-электронов, т.е. что в реальной молекуле p-электронная плотность находится не только между 1 и 2, 3 и 4 атомами углерода, но и между 2 и 3 атомами.

Чем стабильнее каноническая структура, тем больше ее вклад в реальную молекулу. Граничные структуры – фикция, отражающая возможное, но не реальное расположение p-электронов. Следовательно, «стабильность граничной структуры» - стабильность фикции, а не молекулы, существующей в реальности.

Несмотря на то, что граничные структуры не являются отражением объективной реальности, этот подход оказывается весьма полезным для понимания строения и свойств. “Вклад” граничных структур в реальное сопряжение p-электронов пропорционален их стабильности. Такая оценка облегчается при использовании следующих правил:

1) чем в большей степени разделены заряды, тем меньше устойчивость структуры;

2) структуры, несущие разделенные заряды, менее устойчивы, чем нейтральные;

3) структуры, имеющие более 2 зарядов, обычно не вносят никакого вклада в сопряжение;

4) самые неэффективные структуры те, которые несут одинаковые заряды на соседних атомах;

5) чем выше электроотрицательность атома, несущего отрицательный заряд, тем более устойчива структура;

6) нарушение длин связей и валентных углов приводит к снижению стабильности структуры (см. структуру Б, указанную выше);

7) большей устойчивостью обладает граничная структура, имеющая больше связей.

Использование этих правил позволяет утверждать, что хотя формально молекула этилена может быть описана двумя граничными структурами М и Н (см. ниже), вклад структуры Н с разделенными зарядами столь ничтожен, что ее можно исключить из рассмотрения.

Следует особо обратить внимание на использованную для перехода между граничными структурами обоюдоострую, т.н. «резонансную» стрелку. Такой знак указывает на фиктивность изображенных структур.

Грубейшей ошибкой является использование при описании граничных структур двух однонаправленных в разные стороны стрелок, указывающих на протекание обратимой реакции. Столь же грубой ошибкой является и использование при описании равновесного процесса, т.е. реально существующих молекул, «резонансной» стрелки.

Таким образом, в молекуле бутадиена за счет сопряжения р -орбиталей четырех атомов углерода наблюдается повышение p-электронной плотности между вторым и третьим атомами углерода. Это приводит к некоторой двоесвязанности С-2 и С-3, что выражается в уменьшении длины связи до 0,147 нм, по сравнению с длиной простой связи в 0,154 нм.

Для характеристики связи в органической химии часто используют понятия «порядок связи», который определяется как число ковалентных связей между атомами. Порядок связи может быть рассчитан по разным методикам, одной из которых является определение расстояния между атомами и сравнение его с длинами связей этана (порядок углерод-углеродной связи равен 1), этилена (порядок связи 2) и ацетилена (порядок связи 3). В бутадиене-1,3 связь С 2 -С 3 имеет порядок 1,2. Такое значение указывает, что эта связь ближе к ординарной, однако некоторая двоесвязанность присутствует. Порядок связей С 1 -С 2 и С 3 -С 4 равен 1,8. Кроме того, именно сопряжением следует объяснить высокую стабильность бутадиена, что выражается в низком значении теплоты гидрирования (разница в 15 кдж/моль – энергия сопряжения).

В органической химии сопряжение (делокализация) всегда рассматривается как стабилизирующий, т.е. понижающий энергию молекулы, фактор .

4.1. Изомерия и номенклатура диенов

Диеновые углеводороды имеют две двойные связи в молекуле, т. е. на четыре атома водорода меньше, чем соответствующие им предельные уг­леводороды. Общая формула алкадиенов С n Н 2 n -2 . Поскольку для образо­вания двух двойных связей необходимо по крайней мере три атома углеро­да, в этом ряду гомологи с одним и двумя атомами углерода не существуют.

В зависимости от взаимного расположения двойных связей диеновые углеводороды можно разделить на три основных типа:

    диены с кумуллированными двойными связями, т.е. с двойными связями у одного углеродного атома (алленовые);

    диены с конъюгированными (сопряженными) двойными связями;

3) диены с изолированными двойными связями

Диены по систематической номенклатуре называются так же, как и этиленовые углеводороды, только вместо суффикса -ен ста­вится суффикс -адиен (так как двойных связей две). Положение двойных связей, как обычно, показывают цифрами. Для некоторых диенов сохра­нились тривиальные или старые рациональные названия:

СН 2 =С = СН 2 пропадиен, аллен

СН 3 -СН=С=СН 2 1,2-бутадиен, метилаллен

СН 2 =СН-СН=СН 2 1,3-бутадиен, дивинил

2-метил-1,3-бутадиен, изопрен

СН 3 -СН=СН-СН=СН 2 1,3-пентадиен, пиперилен

2,3-диметил-1,3-бутадиен

СН 2 =СН-СН 2 -СН 2 -СН=СН 2 1,5-гексадиен, диаллил

4.2. Способы получения диенов

Способы получения углеводородов диенов в большинстве слу­чаев не отличаются от способов получения олефинов, только соответству­ющие реакции необходимо проводить дважды или в качестве исходного вещества применять соединения, уже содержащие двойную связь.

4.2.1. Дегидрирование алкан-алкеновых фракций:

Дегидрирование бутан-бутеновых и пентан-пентеновых фракций над катализаторами (обычно используется Cr 2 О 3) приводят к образованию диенов:

4.2.2. Получение дивинила и изопрена дегидратацией гликолей

4.2.3. Дегидратация непредельных спиртов

4.2.4. Получение дивинила димеризацией ацетилена с последующим гидрированием

4.2. 5 . Синтез Реппе

Синтез основан на высокой подвижности водорода у тройной связи, благодаря чему он легко вступает во взаимодействие с карбонильными соединениями, в том числе и с метаналем:

Аналогично получают изопрен (способ Фаворского), используя в качестве карбонильного соединения ацетон.

4.3. Физические свойства и строение диенов

Алены (1,2-диены). В молекуле аллена и других соединений с кумулированными связями, π-связи располагаются в двух взаимно перпендикулярных плоскостях. Плоскости, в которых распо­лагаются две пары водородных атомов, также взаимно перпендикулярны. Два крайних угле­родных атома алленовой системы находятся в состоянии sp 2 -гибридизации, средний – sp-гибридизации (рис. 4).

Эти особенности квантово-механического строения проявляются в физических и химиче­ских свойствах алленов. В частности, в ряду алленов при двух различных заместителях у конеч­ных углеродных атомов возможна оптическая активность благодаря молекулярной асиммет­рии. Два пространственных изомера, относящи­еся друг к другу как предмет к своему зеркально­му изображению, при наложении не совпадают и, следовательно, представляют собой две раз­личные изомерные молекулы.

Рис. 4. Строения молекулы аллена

Для алленов характерны легкость гидрата­ции разбавленной серной кислотой с образова­нием кетонов, способность полимеризоваться или конденсироваться с другими непредельны­ми соединениями с образованием четырехчлен­ных циклов (С. В. Лебедев):

Сопряженные диены (1,3-диены). Сопряженные диены отличаются от алкенов большей устойчивостью, а также спо­собностью вступать в реакции присоединения по атомам 1,2 и 1,4 и большей ре­акционной способностью.

Две сопряженные π-связи образуют общее электронное облако - все четыре углеродных атома находятся в состоянии sp 2 -гибридизации. Это приводит к укорочению простой связи и к стабилизации молекулы. В молекуле дивинила π -связи образованы за счет перекрывания р-орбиталей атомов С 1 и С 2 , Сз и С 3 . Также возможно перекрыва­ние р-орбиталей атомов С 2 и С 3 . Возникающая в результате этого делокализация π -электронов делает молекулу более устойчивой, поскольку каждая пара электро­нов притягивается не двумя, а четырьмя ядрами углерода:

Рис. 5. Строение молекулы дивинила

Связь С 2 – С 3 приобретает некоторый характер двоесвязанности. Длина ее меньше, чем в алканах (1,48 Å), что вызвано эффектом сопряжения. Это и объяс­няет поведение диенов в реакциях электрофильного присоединения, где реагент может присоединяться не только к соседним атомам при кратной связи (1,2-присоединение), но и к двум концам сопряженной системы (1,4-присоединение).

Физические свойства диенов. Дивинил при обычных условиях – газ. Изопрен и другие простейшие алкадиены – жидкости. Обычные закономерности, свойственные гомо­логическим рядам углеводородов, действуют и в этом ряду.

Для алкадиенов с сопряженными двойными связями характерны ано­мально высокие показатели преломления света. Благодаря этой особен­ности найденные молекулярные рефракции алкадиенов значительно боль­ше вычисленных. Разница между найденной и вычисленной величинами составляет обычно 1–1,5 единицы. Она называется молекулярной экзальтацией .

Алкадиены поглощают ультрафиолетовое излучение в значительно бо­лее длинноволновой области, чем алкены. Например, 1,3-бутадиен погло­щает при 217 нм. Накопление в молекуле сопряженных двойных связей ведет к дальнейшему смещению максимума поглощения из ультрафиоле­товой области в видимую область: при четырех сопряженных двойных связях появляется желтая окраска.

В ИК-спектрах для 1,3-алкадиенов характерно снижение частоты и увеличение интенсивности полосы валентных колебаний двойных связей (примерно до 1600 см -1).

Наибольшее практическое значение имеют сопряженные диены.

Каталитически возбужденный водород присоединя­ется в 1,2- и 1,4-положения:

4.4.2. Галогенирование

Галогены также способны присо­единяться к сопряженным системам в 1,2- и 1,4-положения, причем ко­личество 1,4-продукта зависит от строения диенового углеводорода, при­роды галогена и условий реакции. Выход продукта 1,4-присоединения возрастает при повышении температуры (до известного предела) и при переходе от хлора к иоду:

Как и в случае этиленовых соединений, присоединение может происхо­дить как по ионному, так и по радикальному механизму.

При ионном механизме присоединения, например хлора, первоначаль­но возникающий π-комплекс (I) быстро превращается в сопряженный карбений-хлорониевый ион с положительным зарядом на С 2 и С 4 , кото­рый можно изобразить двумя граничными формулами (II) или одной мезомерной формулой (III). Этот ион присоединяет далее анион хлора в положения 2 и 4 с образованием продуктов 1,2- и 1,4-присоединения. По­следние, в свою очередь, могут изомеризоваться в подходящих условиях один в другой до достижения состояния равновесия через тот же самый промежуточный карбениевый ион:

Если в условиях реакции присоединения система близка к состоянию равновесия, содержание каждого изомера в продуктах реакции зависит от положения равновесия. Обычно 1,4-продукт энергетически более выго­ден и потому преобладает.

Наоборот, когда система далека от состояния равновесия, может обра­зоваться преимущественно 1,2-продукт, если энергия активации в реак­ции его образования ниже, чем в реакции образования 1,4-продукта. Так, в случае присоединения хлора к дивинилу получается примерно равное количество 1,2- и 1,4-дихлорбутенов, в случае же присоединения брома получается около 66% 1,4-продукта, так как связь С-Вг менее прочна, чем связь С-С1, и равновесие для бромида достигается легче. Повыше­ние температуры приближает систему к равновесному состоянию.

При радикальном присоединении атома галогена образуется сопря­женный радикал, который также обладает двойственной реакционной способностью, однако образуется преимущественно 1,4-аддукт:

4.4.3. Гидрогалогенирование

В реакциях присоединения галогеноводо-родов действуют те же закономерности:

4.4.4. Гипогалогенирование

Гипогалогенные кислоты и их эфиры присое­диняются преимущественно в 1,2-положения. Здесь система в момент ре­акции особенно далека от состояния равновесия (связь С–О значительно прочнее связей С–Hlg), а энергия активации в реакции образования 1,2-продукта ниже, чем в реакции образования 1,4-продукта:

4.4.5. Димеризация диенов

При нагревании молекулы диеновых углеводородов способны присоединяться друг к другу таким образом, что одна из них реа­гирует в 1,2-, а другая в 1,4-положениях. Одновременно в небольших ко­личествах получается также продукт присоединения обеих молекул в 1,4-положение:

В такую реакцию димеризации могут вступать и молекулы различных диенов:

4.4.6. Диеновый синтез

Особенно легко такие реакции идут в том случае, когда одна из реагирующих молекул имеет активированную двойную связь, электрофильность которой повышена благодаря сопряжению с электроотрицательными атомами. Подобные конденсации получили на­звание диенового синтеза или реакции Дильса -Альдера:

Эта реакция широко используется для качественного и количественно­го определения диеновых углеводородов, а также для синтеза различных соединений с шестичленными циклами.

Реакции диенового синтеза и димеризации алкадиенов идут через цик­лическое переходное состояние с одновременным или почти одновремен­ным образованием обеих новых связей, т. е. как перециклические про­цессы.

Возможность и условия протекания подобного рода реакций циклизации, проходящих без промежуточного образования радикалов или ионов, подчиняются закономерностям, нося­щим название правил Вудворта -Гофмана. Согласно этим правилам, для того чтобы замкнулся цикл, орбитали, образующие новые связи, должны иметь возможность перекры­ться с образованием связывающих орбиталей, т. е. должны быть направлены друг к другу сегментами одинакового знака.

Если для этого не требуется возбуждение какой-либо из реагирующих молекул (переход электронов на более высокий уровень с изменением знака сегментов), то процесс разрешен по симметрии как термический, т. е. реакция будет идти или ускоряться при нагревании. Если для указанной выше ориентации орбиталей необходимо перевести электроны одной из моле­кул на более высокий уровень (на разрыхляющую орбиталь), реакция разрешена по симмет­рии только как фотохимический процесс.

Разумеется, такие реакции могут идти и по радикальному или каталити­ческому механизмам с образованием промежуточных частиц. К таким процессам правила Вудворта–Гофмана отношения не имеют.