Ни одна система формирования и поддержания микроклимата на оптимальном уровне не сможет выполнять свои основные задачи точно и корректно, если не будет оснащена системой автоматики.

Состав оборудования систем автоматики

Основными считывающими, контролирующими и управляющими элементами систем автоматики являются:

  1. Датчики: температуры воздуха, влажности, воды, перепада давления на воздушном фильтре — все они предназначены для контроля и реального фиксирования параметров работы установки. В соответствии с показаниями датчиков моделируется тот или иной режим работы установок.
  2. Приводы исполнительных механизмов: воздушных клапанов, противопожарных клапанов или дымоудаления, регулирующих водяных клапанов и т. д. В зависимости от команды, выдаваемой управляющими элементами, приводы могу открывать или закрывать клапана, либо пропорционально изменять сечение на проход воздуха или воды.
  3. Преобразователи частоты вентиляторов, насосов или роторных рекуператоров, а также регуляторы скорости — переназначены для изменения частоты вращения управляемого оборудования в зависимости от сигнала, поступающего с щита управления.
  4. Термостаты, реле протока и прочие компоненты автоматизации, работа которых дублирует основные сигналы систем управления.
  5. Контроллеры, регуляторы напряжения, температуры в составе щитов управления — «мозг» систем автоматизации. Их количество, вид и функциональность целиком и полностью зависит от логики управления, от типа управляемых систем и количества синхронно работающих.

Разновидности систем автоматизации

Неоспоримым фактом является прямая зависимость типа системы автоматики от применяемого оборудования систем вентиляции и требования к функциональности управления системами и поддержанию параметров воздуха.

Систем автоматизации можно выделить несколько типов:

  • Автоматика приточных систем с водяным или электрическим нагревом.
  • Комплексная автоматика приточных систем с нагревом воздуха и им соответствующих вытяжных систем.
  • Автоматика приточно-вытяжных установок с рекуперацией воздуха.
  • Комплексная автоматика и управление всеми климатическими системами: системой отопления, вентиляции, кондиционирования и т. .д.

Автоматика приточных систем с водяным или электрическим нагревом

Такой тип автоматизации является одним из простейших, позволяющий контролировать минимальное количество параметров и работу оборудования отдельных приточных систем. При данном типе автоматизации согласованного управления совместно с вытяжными системами не происходит.

Основными функциями таких систем является:

  • Поддержание температуры приточного воздуха;
  • Поддержание температуры обратного теплоносителя;
  • Защита калорифера от обмерзания;
  • Контроль засорения воздушного фильтра;
  • Регулирование скорости вращения вентилятора.

Щиты автоматики для таких систем, как правило, поставляются комплектно с установками, так как не требуют доскональной разработки программного продукта управления и логикой системы. С экономической точки зрения штатные комплектные шкафы автоматики можно применять когда приточных систем вентиляции в здании небольшое количество и они значительно удалены друг от друга.

Комплексная автоматика приточных и вытяжных систем

Данный тип автоматизации является одним из самых распространенных, так как позволяется выполнять следующий набор функций:

  • Поддержание температуры приточного воздуха в зависимости от температуры уставки контроллера, а также с корректировками в зависимости от температуры вытяжного воздуха или температуры базового помещения. То есть в случае, когда происходит рост температуры в помещении (или вытяжного воздуха общеобменных систем) автоматика выдает сигнал на исполнительные механизмы, что температуру приточного воздуха можно понизить до заданного диапазона. Градиент понижения температуры приточного воздуха не должен быть ниже температуры точки росы.
  • Управление качеством воздуха в зависимости от наполненности помещения посетителями (например, в торговых центрах и ли кинозалах). С увеличением содержания СО2 в вытяжном воздухе контроллер системы автоматики выдает сигнал на увеличение расходов воздуха для разбавления вредностей. При достижении нормируемых показателей системы могут выходить на минимальный расход, тем самым обеспечивается значительная экономия энергоресурсов.
  • Управление работой вентиляторов приточных систем согласованно с работой вытяжных из общего объема помещений. Эта функция как нельзя просто позволяет осуществлять главные правила сбалансированных систем вентиляции. То есть когда требуется снижение расхода приточного воздуха, система автоматики пропорционально снижает расход вытяжного воздуха. При этом системы должны быть общеобменными, управлять местными вытяжными системами по такому принципу нельзя с технологической точки зрения.

Щиты управления комплексных систем автоматизации уже не являются готовым продуктом, а должны разрабатываться специализированными организациями совместно с проектными организациями. Контроллеры в таких системах применяются свободно программируемого исполнения, в которые в процессе программирования вшивается программа с определенной логикой работы систем вентиляции. Щитов управления может быть равным количеству сисетем, а могут и объединяться по зонам управления, если, например, несколько приточных систем находятся в одной венткамере. Это позволит значительно экономить на стоимости контроллеров, наращивая их определенными блоками расширения. Щиты управления при этом должны быть соединены совей внутренней сетью.

Автоматика приточно-вытяжных установок с рекуперацией воздуха

Системы общеобменной вентиляции с функцией рекуперации являются разновидностью систем вентиляции со сбалансированной работой приточных и вытяжных установок, с добавлением в системы автоматизации дополнительных управляющих, сигнализирующих и контролирующих элементов.

Схема рекуператора

Основными функциями таких систем автоматики является:

  • Поддержание температуры приточного воздуха в зависимости от уставки либо с корректировкой по базовому датчику воздуха в помещении.
  • Контроль температуры вытяжного воздуха до и после рекуператора с целью предотвратить его замораживание, или в случае применения роторного рекуператора увеличить или уменьшить его частоту вращения.
  • Контроль обмерзания каналов пластинчатого рекуператора в зависимости от датчика дифференциального давления. В случае, когда воздушные каналы зарастают инеем или «ледяной» шубой, должен открыться байпас рекуператора или включиться первая ступень нагрева калориферов.
  • Поддержание температуры обратного теплоносителя.
  • Защита калорифера от обмерзания.
  • Контроль засорения воздушного фильтра.
  • Управление качеством воздуха в зависимости от показаний датчика СО2.
  • Управление работой вентиляторов приточных систем согласованно с работой вытяжных из общего объема помещений.
  • Управление частотой вращения роторного рекуператора в зависимости от соотношения температур приточного и вытяжного воздуха для достижения максимальной эффективности и снижения затрат на нагрев приточного воздуха.

Комплексная автоматика и управление всеми климатическими системами

Этот тип автоматизации инженерными системами является одним из самых сложных с точки зрения реализации, но в то же время позволяет максимально эффективно использовать все внешние и внутренние энергоресурсы здания.

Суть данного способа заключается в контроле работ инженерных систем, контроля общих параметров воздуха с целью не допустить одновременной работы «конкурирующих» установок.

Часто возникает ситуация когда системы отопления, ИТП и кондиционирования здания могут работать одновременно каждые в своем режиме, согласно программе контроллера каждой системы в отдельности. В целом такая работа является верной, поддерживаются все параметры, но общей логики включения/отключения систем не предусмотрено. Такие ситуации могут возникнуть в переходный период времени года, когда температура помещения с остеклением, выходящим южный фасад, начинает расти, включается система кондиционирования здания, при этом подача тепла в здание не прекращается, так как показания уличной температуры воздуха не позволяют прекратить обогревать помещения. Возникает перерасход тепловой и электрической энергии до момента, пока эти системы вручную не будут отрегулированы или отключены.

Комплексные системы автоматизации обязательно должны проектироваться одновременно со всеми инженерными системами здания и учитывать нюансы систем, ориентацию здания по сторонам света, работу систем в переходный период, зональное управление с учетом температур помещений и т. д.

P/S. от директора компании ООО «Регион»:

Здания нельзя представить без системы, которая в принудительном порядке обеспечивает вентиляцию в помещение. В процессе вентиляции происходит выход загрязнённого воздушного потока и его полная или частичная замена на чистый. Автоматизация вентиляции делает возможным организацию контроля управления процессом, что, в свою очередь, помогает обезопасить строение и обеспечить энергоэффективность. Вентиляционная автоматика различается, поэтому в данной статье мы расскажем каково их назначение и в чём особенность, а также какие характеристики.

Назначение системы автомат

На сегодняшний день комплекс вентилирования полностью модернизирован и является сложной приборной систематикой с силовой установкой, калориферами и каналами, обеспечивающими микроклимат помещения. Для того чтобы все узлы и агрегаты работали слаженно, современные инженеры снабжают систему аппаратурой с датчиками и механизмами. Именно за счёт них можно управлять вентиляцией в сборке.

Задачи системой вентиляции:

  • Управление и мониторинг параметров системы: сигнал поломки, небезопасных режимов и других непредвиденных рабочих моментов. Современные контроллеры связаны с оператором в режиме реального времени. Это позволяет оператору наблюдать за работой всех системных показателей и устанавливать их соответствие с нужным режимом.
  • Индивидуальный анализ выработки любого механизма и процесса в общем согласно заданным параметрам через мониторинг. Автомат управления принимает данные, полученные при помощи датчиков, и проводит исследование вычислительными мощностями. Если необходимо вносит корректировку в общую производительность через сигнал действующей механики либо через систему пуска-включения.
  • Защита клапанной части и водных контуров обогревательного элемента от промерзаний. Системный термостат следит за температурами калориферов, не позволяя опуститься за критическую отметку.
  • Управление рабочими процессами посредством переключения режима. Это необходимо для рационального использования автоматической системы в связи с изменением нагрузки на помещение, недельной дневности, времени суток или климатических условий. Программы автоматического управления вентиляционной системой, опираясь на сведения мониторинга, имеют возможность использовать в качестве дополнения силовые установки, завершать деятельность или менять скорость движения лопастей вентиляторов, запускать и отключать воздухоосушители и так далее.
  • Блокировка механизма в случае замыкания или любого аварийного случая, связанного с электроникой, чтобы исключить возможное возгорание.

Автоматика в системе вентиляции имеет ключевую роль и выполняет целый ряд нужных задач, без неё выполнение всех перечисленных опций силами обслуживающего персонала невозможно.

Основные узлы автовентиляции

Проект системы автоматической вентиляции требует достаточно трудоёмкий и сложной работы инженеров, такой процесс требует не только теоретических знаний, но и большого опыта.

Необходимые знания:

  • аналогичную системную структуру;
  • главные части и основные узлы;
  • логическую работоспособность и совокупность всех деталей и аппаратов.

Для того чтобы применить самую оптимальную комплектацию приборов для системы и контроля над ней обязательно учитывать номенклатуру отличных производств, а также обладать эксплуатационным опытом такой аппаратуры. Нелишним будет и изучение отзывов пользователей, чтобы понимать соотношение цены и качества модели на сегодняшний день. Это позволит приобретать качественную систему на выгодных условиях.

Системы кондиционирования воздуха (СКВ) предназначены для создания и автоматического поддержания необходимых параметров воздуха в помещениях (температуры, относительной влажности, чистоты, скорости движения и др.). В зависимости от назначения СКВ разделяются на технологические, обеспечивающие состояние воздушной среды, удовлетворяющее требованиям конкретного технологического процесса, и комфортные, создающие благоприятные условия для человека. В зависимости от конструкции кондиционеры подразделяются на секционные и агрегатные, а по оснащенности устройствами для получения тепла и холода их делят на автономные и неавтономные. Автономные кондиционеры снабжаются извне только электроэнергией. Для работы неавтономных кондиционеров необходима подача извне тепло- и холодоносителя, а также электроэнергии для привода двигателей вентиляторов и насосов.

Рассмотрим вначале основные принципы автоматизации установки комфортного кондиционирования воздуха, предназначенной для поддержания заданной температуры и влажности в помещении (рис. 8.5).

Для зимних условий воздух обрабатывается по следующей схеме. Наружный воздух сначала подогревается в утилизаторе У от точки Н 3 до точки У 3 , а затем в воздухоподогревателе первой ступени от точки У 3 до значения / к. В результате адиабатического увлажнения при постоянной энтальпии воздух приобретает параметры, соответствующие точке К г В воздухоподогревателе второй ступени воздух нагревается до точки Я 3 и подается в помещение.

По мере повышения энтальпии наружного воздуха сокращается его нагрев в воздухоподогревателе первой ступени, и при достижении энтальпии 1 К подогрев должен быть отключен. Наступает переходный режим, который характеризуется постоянной внутренней температурой / 3 и меняется в зависимости от энтальпии наружного воздуха и относительной влажности внутри помещения.

Исходя из условий комфортности допустимы колебания относительной влажности в пределах 40-60%. При энтальпии наружного воздуха выше / п в обслуживаемом помещении целесообразно

Рис. 8.5.

а - технологическая схема СККВ; б - процессы обработки воздуха

в /-б диаграмме

поддерживать максимальную по комфортным условиям относительную влажность воздуха (до 60%), допуская при этом значительные колебания внутренней температуры. Поскольку колебания внутренней температуры связаны с изменением энтальпии наружного воздуха, в теплое время создается некоторый «динамический» климат, характеризующийся лучшими условиями для самочувствия человека, чем статический при постоянной температуре. Одновременно обеспечивается некоторая экономия расхода холода. При энтальпии наружного воздуха / н предусматривается только адиабатическое увлажнение. На воздухонагреватель второй ступени в это время воздействует датчик относительной влажности ср, установленный в помещении, с помощью которого при отклонении влажности в большую сторону увеличивается поступление теплоносителя в воздухонагреватель. Пунктирная линия на рис. 8.5 (от Г п до / л) показывает, что датчик должен быть настроен на 57-58% во избежание увеличения значения ф свыше 60%. Это вызвано недопустимостью более высокой относительной влажности и желанием сохранить установленную рабочую разность температур между внутренним и приточным воздухом.

Летний режим работы системы кондиционирования начинается при достижении наружным воздухом энтальпии / л. В это время требуется подача холодной воды в оросительную камеру для поддержания параметров воздуха К л. Для этой цели за оросительной камерой устанавливают датчик температуры, с помощью которого по мере повышения температуры увеличивается подача холодной воды в камеру. Поскольку за форсуночной камерой температура воздуха неодинаковая, возможны выносы капель влаги и попадание их на измеритель температуры. Кроме того, учитывая отрицательное влияние лучистого тепла от воздухоподогревателя второго подогрева, регулирование целесообразно осуществлять по сигналам датчика температуры, установленного в помещении. К достоинствам этого способа следует отнести и то обстоятельство, что в нем учитывается и теплоаккумулирующая способность помещения. Измеритель температуры, установленный в помещении, настраивается на значение температуры, определяемое точкой t л, и воздействует на подачу холодной воды в оросительную камеру.

Построенная на основе схемы такой обработки воздуха система автоматизации приведена на рис. 8.6. В зимний период за ороси-


Рис. 8.6.

кондиционирования воздуха

тельной камерой с помощью пропорционального регулятора поддерживается заданная температура (поз. 1). Измеритель, настроенный на температуру / р 3 , воздействует на исполнительный механизм регулирующего органа на обратном трубопроводе теплоносителя к воздухоподогревателю КП первого подогрева. Оросительная камера обеспечивает адиабатическое увлажнение наружного воздуха до 90-95%. По мере повышения энтальпии наружного воздуха уменьшается его подогрев, и при энтальпии / к первый подогрев выключается.

Температура внутреннего воздуха регулируется двухпозиционным регулятором (поз. 2). Датчик температуры, установленный в помещении и настроенный на поддержание температуры (3 , воздействует через запретно-разрешающее устройство (поз. 3) на воздухонагреватель КП второго подогрева. Запретно-разрешающее устройство включается в цепь для переключения регулирования по температуре внутри помещения на регулирование по относительной влажности. Такое переключение производится в тот момент, когда относительная влажность в помещении приближается к 60%. В этот момент температура воздуха за оросительной камерой повысится до значения / р п. Сигнал от этого датчика поступает на запретно-разрешающее устройство, которое производит переключение датчика температуры внутри помещения на датчик относительной влажности.

В теплое время внутри помещения с помощью пропорционального регулятора (поз. 6) поддерживается постоянная относительная влажность при изменяющихся значениях температуры. Датчик влажности, как и в зимнее время, через промежуточное реле РП и запретно-разрешающее устройство воздействует на воздухоподогреватель второй ступени. При увеличении относительной влажности выше 60% включается второй подогреватель и температура достигает такого значения, при котором относительная влажность становится меньше 60% и соответствует определенной энтальпии наружного воздуха.

Летний режим, при котором необходимо применение холодной воды, наступает при температуре внутри помещения, соответствующей средней летней комфортной. В этот момент срабатывает второй датчик температуры, настроенный на 1 Л. Регулятор температуры (поз. 5) воздействует на подачу холодной воды в камеру орошения. В помещении стабилизируются сразу два параметра: температура и относительная влажность воздуха. На разные регулирующие органы воздействуют сразу два регулятора, что позволяет поддерживать относительную влажность с точностью ±5% и расходовать минимум холода. Повышение точности стабилизации параметров микроклимата может быть достигнуто также синтезом стабилизации с коррекцией по отклонениям от заданных температуры и относительной влажности воздуха в помещении. Это обеспечивается переходом от одноконтурных к двухконтурным каскадным системам стабилизации, которые, по существу, должны быть основными системами регулирования температуры и влажности воздуха.

Работа каскадных систем основана на регулировании не одним, а двумя регуляторами, причем регулятор, контролирующий отклонение основной регулируемой величины от заданного значения, воздействует не на регулирующий орган объекта, а на задатчик вспомогательного регулятора. Этот регулятор поддерживает на заданном уровне некоторую вспомогательную величину промежуточной точки объекта регулирования. Так как инерционность регулируемого участка первого контура регулирования незначительная, в этом контуре может быть достигнуто относительно большое быстродействие. Первый контур называется стабилизирующим, второй - корректирующим. Функциональная схема каскадной системы для прямоточной СКВ показана на рис. 8.7.

Первая система обеспечивает стабилизацию температуры воздуха после воздухоподогревателя второго подогрева с коррекцией


Рис. 8.7.

процесса кондиционирования воздуха

по температуре воздуха в объекте регулирования (помещении) путем изменения расхода теплоносителя в воздухонагревателе (регулятор ТС 2). Корректирующее воздействие осуществляется с помощью корректирующего регулятора ТС 2 . Таким образом, система регулирования температуры воздуха после воздухонагревателя второго подогрева включает цепь регулирования температуры воздуха путем изменения расхода теплоносителя и цепь коррекции, изменяющую задание регулятора ТС 2 в зависимости от изменения температуры воздуха в помещении.

Во вторую систему стабилизации входят чувствительный элемент температуры точки росы, установленный после камеры орошения, и регулятор ТС, управляющий последовательно исполнительными механизмами клапанов оросительной камеры, воздухонагревателя первого подогрева и смесительно-регулирующих воздушных клапанов наружного и рециркуляционного воздуха.

Корректирующее воздействие на регулятор ТС, осуществляется с помощью регулятора влажности МС, датчик которого установлен в помещении.

В последние годы при реализации рассмотренных принципов автоматизации систем кондиционирования воздуха все чаще применяют микропроцессорные регуляторы.

Системы с автоматизированных управлением помогают провести оптимизацию работы вентиляционных систем. Особенно это важно в больших зданиях или на крупных предприятиях, где вентиляционная конструкция занимает довольно обширную территорию, и уследить за работой всех приборов бывает сложно. Оборудование применяется как на объектах, связанных с производством и промышленностью, так и в общественных зданиях — торговых центрах, местах отдыха, спортивных комплексах. Правильная настройка автоматики вентиляции гарантирует бесперебойную работу и удобное управление всей системой.

Назначение автоматических систем

Современные системы, предназначенные для осуществления вентилирования, являются довольно сложными, поскольку включают в себя множество разнообразных приборов со своими функциями и особенностями. Их качественная работа возможна только при осуществлении слаженных действий, которые нужно как-то контролировать. Разобраться в этом помогает схема автоматики вентиляции, которая предназначена для облегчения работы со всеми приборами, включенными в систему. Специальные датчики и механизмы помогают полноценно осуществлять контроль и отдавать различные команды без необходимости пересекать всю территорию предприятия, чтобы проделать какую-то операцию с прибором. Грамотно проведенная система способствует решению следующих вопросов:

  • Отслеживает показатели и контролирует состояние комплекса. На монитор выводятся все необходимые данные, которые видит оператор, и может по ним сделать вывод о текущем положении дел. Кроме того, если произойдут какие-то неполадки, система сразу же подаст тревожный сигнал, оповещающий о том, что нужно решить проблему. А следя за показателями, можно увидеть возможные предвестники проблемы, на основе изменившихся данных, и предотвратить серьезные поломки, сразу вмешавшись в работу конструкции.
  • Анализ данных каждого устройства может проводиться автоматически. Система сама собирает показатели, считывая их на протяжении определенного времени, а затем анализируя и сравнивая с нормой. В соответствии с полученными показаниями, автоматическое управление подает ту или иную команду или сигнал.
  • Переключение режимов. Автоматика может подключать либо выключать доп. установки, приборы и функции, это зависит от времени суток, степени нагрузки или погодных условий, обеспечивая создание оптимального режима работы.
  • В случае замыкания либо возникновения другой аварийной ситуации, система сама отключит оборудование от электросети, предотвращая более серьезные повреждения или даже возгорание приборов.

Наличие автоматического управления позволяет значительно оптимизировать работу всей техники, в итоге для обслуживания потребуются только 1-2 оператора, а не целый отдел персонала. Использование современных технологий позволяет снизить количество требуемых работников и, соответственно, сократить расходы, поэтому это подходящий вариант для коммерческих организаций.

Основные узлы системы

Проектирование подобных систем является сложным делом, требующим определенных знаний и навыков, поэтому шкаф автоматики вентиляции должен настраивать специалист, который в этом разбирается. Чтобы работать с приборами, нужно знать назначение каждого узла, особенности его работы и взаимодействия с другими элементами. Нужно иметь опыт работы с различными аппаратами и техникой от разных производителей. Именно поэтому выполнять всю работу должны профессионалы, которые имеют необходимые знания и опыт.

Современные щиты автоматики для систем вентиляции включают в себя довольно много различного оборудования. Все приборы, которые каким-либо образом задействованы в создании системы управления, можно разделить на три группы:

  • Сенсорные датчики. Эти устройства собирают всевозможную информацию о состоянии системы, считывая уровень влажности, температуры, давления и прочие важные показатели. Они подают электрический сигнал, который поступает дальше в систему.
  • Регуляторы и контроллеры. Эти приспособления отвечают за дальнейший анализ полученных данных. Они сравнивают информацию между собой, а также с установленными нормами, проводят логический анализ и на его основе подают какие-либо команды в систему, включая или отключая определенные функции.
  • Исполнительная механика. Эти детали обеспечивают выполнение полученных команд, заставляя приборы исполнять определенные функции и действия.

Возможности и преимущества системы

Что может делать автоматическая система контроля? Минимальный набор доступных функций включает следующие пункты:

  • Контроль за вращением вентиляторов и их частотой, а также регулировка этого процесса.
  • Отслеживание температуры воды и предотвращение замерзания.
  • Контроль состояния воздуха и управление системой на основании изучения параметров микроклимата.
  • Индикация состояния фильтров и сигнализирование о необходимости их очищения.
  • Перевод отдельных частей системы в неактивный режим.
  • Защита техники от коротких замыканий и других неполадок.

Развитие техники позволяет создавать сложные схемы и системы, поэтому многие современные конструкции уже планируются с учетом таких факторов и никак не могут обойтись без автоматического управления. Если на предприятии или в организации используется самое современное вентиляционное оборудование, то, скорее всего, оно предполагает и наличие автоматического управления, и схемы уже заранее рассчитаны на установку таких приборов.

Впрочем, использование техники действительно имеет значительные преимущества. Машина способна быстро анализировать огромное число информационных потоков и проводить сразу множество операций, на что человеческий мозг просто не рассчитан. Поэтому такая система работает гораздо эффективней, чем даже целый отдел из человеческого персонала. Кроме того, технике не нужны выходные, перерыв на сон и на обед, она в любое время остается на своем посту и следит за системой вентиляции. Использование автоматики позволяет исключить возможные ошибки из-за влияния человеческого фактора.

Автоматические устройства контроля за работой вентиляционной системы предназначены для поддержания комфортных условий в производственных и жилых помещениях.

Современные системы – это комплекс автоматического управления микроклиматом помещения. Для поддержки слаженной работы всех механизмов и устройств, разработчики устанавливают сложную аппаратуру с различными датчиками и реле. Только такое обустройство щита автоматики позволяет корректировать действие всей системы вентиляции.

Автоматизация систем вентиляции монтируется для решения проблем при использовании вентиляционного оборудования и механизмов.

Основные задачи, выполняемые автоматикой вентиляции

При возникновении некоторых неисправностей, происходит срабатывание автоматического управления вытяжки, обеспечивается высокая безопасность:

  1. Решение задач по управлению и мониторингу нормальной работы схемы. Должен устанавливаться сигнализатор аварии, опасных режимах эксплуатации оборудования. Новые разработки позволяют управлять работой схемы удаленно. Оператор наблюдает за функционированием устройства, может вносить коррективы, устанавливать оптимальные режимы.
  2. Произведение индивидуального анализа и мониторинга работы каждого отдельного механизма и общей деятельности схемы вентиляции. Датчики устройства доставляют информацию, автоматика производит исследование ситуации и вносит корректировки в работу вентиляционного оборудования. В случае аварии, подается сигнал на кнопку пуска для выключения оборудования.
  3. Осуществляет защиту клапанов и водяного контура нагрева от низких температур, не позволяет опускаться температуре до критического уровня.
  4. Обеспечивает возможность управления процессом вентилирования помещения, переключая режимы эксплуатации оборудования. При перепадах нагрузки, температуры в помещении – система управления способна понижать скорость вращения вентиляторов, полностью выключать оборудование и поддерживать комфортные условия в обслуживаемом помещении.
  5. В случае короткого замыкания и других аварийных ситуаций, производит блокировку механизмов, для исключения пожара и поражения людей током.

Важно. В организации безопасной работы вентиляционной системы автоматика выполняет главную роль – позволяет проводить управление процессом без участия человека, экономя при этом значительные средства.

Сложность выполняемой работы зависит от укомплектованности щита автоматического устройства.

Оборудование для системы автоматического управления вентиляцией

Выпускается ряд типов приборов, устройств и датчиков для создания автоматики управления вентиляцией. Для управления отдельным процессом, предназначены механизмы контроля. Но устройства не только контролируют весь процесс, но и управляют эксплуатацией одного участка схемы.

Поэтому, в состав автоматики входят десятки различных реле, датчиков и других приборов.

Важно. Как правило, для обслуживания вентиляции используются электронные приборы. Но для контроля над температурой нагрева или охлаждения воздуха устанавливают механический узел обвязки.

В состав автоматического устройства управления системой вентиляции, обязательно входят следующие приборы:

  • регулятор температуры воздушных масс;
  • прибор регулировки величины оборотов вентилятора;
  • в узле обвязки устанавливается датчик нагрева воды и воздуха;
  • привод управления запорным клапаном.

Но данные приборы производят локальное регулирование работы системы или делают замеры. Контроль и определение общего уровня безопасности, всего цикла работы вентиляционной системы, осуществляется с помощью шкафа центрального управления устройства вентиляции.

Сложность системы можно понять, ознакомившись с полным списком оборудования данного устройства. Количество определенных датчиков или реле может быть значительным, а некоторые приборы представлены в единственном числе. Рассмотрим устройство некоторых щитов автоматического управления.

Устройство вентиляционной щитовой для системы с установкой электрического калорифера

Для обустройства данной щитовой используются следующие составляющие автоматики:

  • регулятор установки температурного режима (одним из лучших вариантов будет использование шведских деталей компании Regin);
  • группа управления вентиляторами приточной, вытяжной системы. Лучшим вариантом является установка приборов, осуществляющих ступенчатую или плавную регулировку;
  • индикаторы использования вентиляционной установки;
  • группа приборов для поддержания номинальной температуры в помещении;
  • выключение подачи электричества на калорифер, при отключении приточных вентиляторов;
  • группа приборов для отключения, индикации загрязнения воздушных фильтров;
  • устройство защитного отключения при перегреве системы;
  • система автоматического выключения при пиковых токах короткого замыкания, значительных перегрузках.

Щитовая для обслуживания автоматики с водяными калориферами

Автоматика приточной вентиляции призвана обеспечивать безопасность при эксплуатации приборов подогрева воздуха, вентиляции помещения. Основной прибор щита – это контроллер AQUA шведского производства. Остальные составляющие устанавливают для решения следующих вопросов:

  • производят управление вентиляторными устройствами;
  • поддерживают заданную температуру воздушных масс;
  • переключают режимы эксплуатации;
  • управляют приводами клапанов с возвратными пружинами, обеспечивающими закрытие воздухозаборными клапанами, в случае выключения вентиляторных установок, коротком замыкании фазы на корпус;
  • управляют работой насоса циркуляции воды в калорифере, устанавливаемом в узле обвязки;
  • осуществляют контролирование за температурой воды в обратной магистрали при разных режимах работы, при выключении калорифера;
  • выключают подачу энергии при загрязнении воздушного фильтра.

Автоматизация вентиляции позволяет решать сложные задачи в любых условиях и при различных режимах эксплуатации оборудования. Каждая схема вентилирования воздуха монтируется с автоматической системой управления процессом.

В заключение, отметим основные моменты, на которые следует обращать пристальное внимание при покупке приборов оснащения щита автоматического управления устройством вентилирования зданий.

Основной критерий выбора – это надежность комплектующих. Обязательно попросите у менеджера сертификат качества данных приборов, а также гарантии компании изготовителя щитов вентиляции и каждой отдельной детали. Обращайте внимание на наличие производственной базы для выполнения ремонта, гарантийного сервисного обслуживания вентиляционного оборудования, схемы автоматического управления процессом.

Каждый прибор должен иметь паспорт, инструкцию, схему подключения. Сегодня на рынке вентиляционного оборудования, различные производители предлагают разнообразный ассортимент комплектующих и схем устройств щитов вентиляции. Сделав правильный выбор, качественно выполнив монтаж автоматических шкафов, вы получаете надежное, безопасное оборудование, на достаточно долгое время.