Цель занятия:

1. Изучить влияние на организм человека факторов микроклимата (атмосферное давление, температура, относительная влажность, скорость движения воздуха) и освоить методы их определения.

2. Проанализировать полученные результаты и дать гигиеническое заключение о микроклимате учебного помещения.

Место проведения занятия: учебно-профильная лаборатория гигиены атмосферного воздуха.

Современный человек в силу объективных и субъективных причин большую часть времени (до 70%) суток проводит в закрытых помещениях (производственные помещения, жилище, лечебно-профилактические учреждения и т.д.). Внутренняя среда помещений оказывает непосредственное влияние на состояние здоровья людей.

Микроклимат – состояние окружающей среды в ограниченном пространстве (помещение), определяемое комплексом физических факторов (температура, влажность, атмосферное давление, скорость движения воздуха, лучистое тепло) и оказывающее влияние на тепловой обмен человека.

Влияние микроклимата на организм определяется характером отдачи тепла в окружающую среду. Отдача тепла человеком в комфортных условиях происходит за счет теплоизлучения (до 45%), теплопроведения – конвекции, кондукции (30%), испарения пота с поверхности кожи (25%). Наиболее часто неблагоприятное влияние микроклимата обусловлено повышением или понижением температуры, влажности или скорости движения воздуха.

Высокая температура воздуха в сочетании с повышенной влажностью и малой скоростью воздуха резко затрудняет отдачу тепла путем конвекции и испарения, в результате чего возможно перегревание организма. При низкой температуре, высокой влажности и скорости воздуха наблюдается противоположная картина – переохлаждение. При высокой или низкой температуре окружающих предметов, стен снижается или увеличивается отдача тепла путем излучения. Возрастание влажности, т.е. насыщенности воздуха помещения водяными парами, приводит к снижению отдачи тепла испарением.

Характеристика отдельных категорий работ

¨ категория Iа – работы с интенсивностью энерготрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и т.п.)

¨ категория Iб – работы с интенсивностью энерготрат 121–150 ккал/ч (140-174 Вт), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т.п.)

¨ категория IIа – работы с интенсивностью энерготрат 151–200 ккал/ч (175-232 Вт), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т.п.).

¨ категория IIб – работы с интенсивностью энерготрат 201–250 ккал/ч (233-290 Вт), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т.п.).

¨ категория III – работы с интенсивностью энерготрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т.п.).

Врач должен уметь оценивать микроклимат помещения, прогнозировать возможные изменения теплового состояния и самочувствия лиц, подвергающихся воздействию неблагоприятного микроклимата, оценивать риск возникновения простудных заболеваний и обострения хронических воспалительных процессов.

Документы, регламентирующие параметры микроклимата помещений

При оценке параметров микроклимата используются следующие документы:

¨ СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений».

¨ СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям».

Санитарные правила устанавливают гигиенические требования к показателям микроклимата рабочих мест производственных и других помещений с учетом интенсивности энерготрат работающих, времени выполнения работы и периодов года. Факторы микроклимата должны обеспечить сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

Оптимальные микроклиматические условия обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

Перепады температуры воздуха по вертикали и горизонтали, а также изменения температуры воздуха в течение смены не должны превышать 2 о С и выходить за пределы величин, указанных в таблицах 1, 2.

Таблица 1

Параметры микроклимата в помещениях лечебно-профилактических учреждений

Таблица 2

Параметры микроклимата в жилых помещениях


Классификация типов микроклимата

Оптимальный – микроклимат, при котором человек соответствующего возраста и состояния здоровья находится в ощущении теплового комфорта.

Допустимый – микроклимат, который может вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния человека.

Нагревающий – микроклимат, параметры которого превышают допустимые величины и могут быть причиной физиологических сдвигов, а иногда – причиной развития патологических состояний и заболеваний (перегревание, тепловой удар, и др.).

Охлаждающий – микроклимат, параметры которого ниже допустимых величин и могут вызвать переохлаждение, а также связанные с этим патологические состояния и заболевания.

ПОРЯДОК ВЫПОЛНЕНИЯ ИССЛЕДОВАНИЙ

Определение атмосферного давления

Барометрическое давление на поверхности Земли неравномерно и непостоянно. С поднятием на высоту наблюдается уменьшение давления, при опускании на глубину – повышение. Изменение давления в одном и том же месте зависит от различных атмосферных явлений и служит известным предвестником перемены погоды.

В обычных условиях колебания атмосферного давления (10–30 мм рт.ст.) здоровые люди переносят легко и незаметно. Однако некоторые пациенты (люди с незначительными и значительными нарушениями здоровья) оказываются весьма чувствительными даже к небольшим изменениям атмосферного давления – страдающие ревматическими заболеваниями, нервными болезнями, некоторыми инфекционными: обострение течения туберкулеза легких совпадало с резкими колебаниями барометрического давления.

В особых условиях жизни и трудовой деятельности отклонения от нормального атмосферного давления могут служить непосредственной причиной нарушения здоровья людей. Рассмотрим некоторые из них.

В горных районах, расположенных на высоте 2500–3000 м над уровнем моря и выше, наблюдается значительное уменьшение барометрического давления, сопровождающееся соответствующим уменьшением парциального давления кислорода. Это обстоятельство служит основной причиной возникновения горной (высотной) болезни, выражающейся в появлении одышки, сердцебиения, головокружения, тошноты, носового кровотечения, бледности кожных покровов и др. В основе клинических признаков горной болезни лежит гипоксия.

Повышенное атмосферное давление встречается в кессонах (фр. caisson букв . ящик) – специальных устройствах при водолазных работах. При несоблюдении необходимых профилактических мероприятий повышенное давление способно вызвать резкие физиологические сдвиги в организме, которые могут принять патологический характер с развитием кессонной болезни : при быстром переходе из атмосферы с повышенным давлением в атмосферу с обыкновенным давлением избыточное количество азота, растворенное в крови и тканевых жидкостях (главным образом в жировой ткани и в белом веществе мозга) не успевает выделиться через легкие и остается в них в виде пузырьков газа. Последние разносятся кровью по всему организму и могут обусловить газовые эмболии в различных частях тела. Клинические проявления кессонной болезни заключаются в мышечно-суставных и загрудинных болях, кожном зуде, кашле, вегетативно-сосудистых и мозговых нарушениях. Попадание газового эмбола в коронарные сосуды сердца может послужить причиной смерти.

Таким образом, измерения барометрического давления имеют большое практическое значение для предупреждения серьезных последствий этих изменений для здоровья людей.

Атмосферное давление измеряют с помощью ртутного барометра или барометра-анероида . Для непрерывной регистрации колебаний атмосферного давления пользуются барографом (рис.1). Атмосферное давление в среднем колеблется в пределах 760±20 мм рт.ст.

Рис 1. Барограф

Определение температуры воздуха

Температура воздуха оказывает прямое влияние на теплообмен человека. Колебания ее существенным образом отражаются на изменении условий теплоотдачи: высокая температура ограничивает возможность отдачи тепла телом, низкая повышает ее.

Совершенство терморегуляционных механизмов, деятельность которых осуществляется под постоянным и строгим контролем со стороны центральной нервной системы, позволяет человеку приспосабливаться к различным температурным условиям окружающей среды и кратковременно переносить значительные отклонения температуры воздуха от обычных оптимальных величин. Однако пределы терморегуляции отнюдь небезграничны и переход их вызывает нарушение теплового равновесия организма, что может причинить существенный вред здоровью.

Продолжительное пребывание в сильно нагретой атмосфере вызывает повышение температуры тела, ускорение пульса, ослабление компенсаторной способности сердечно-сосудистого аппарата, понижение деятельности желудочно-кишечного тракта вследствие нарушения условий теплоотдачи. В таких условиях внешней среды отмечается быстрая утомляемость и понижение умственной и физической работоспособности: снижается внимание, точность и координация движений, что может послужить причиной травматических повреждений при выполнении работы на производстве и др.

Низкая температура воздуха, увеличивая теплоотдачу, создает опасность переохлаждения организма. В результате создаются предпосылки к простудным заболеваниям, в основе которых лежит нейрорефлекторный механизм, вызывающий те или иные дистрофические изменения в тканях на почве нарушения баланса регуляции обменных процессов.

Умеренные колебания температуры можно рассматривать как фактор, обеспечивающий физиологически необходимую тренировку организма как единого целого и его терморегуляторных механизмов.

Наиболее благоприятной температурой воздуха в жилых помещениях для человека, находящегося в покое, является 20–22 о С в холодное время года и 22–25 о С в теплое время года при нормальной влажности и скорости движения воздуха.

Методика оценки температурного режима

Температуру воздуха измеряют с помощью ртутных и спиртовых термометров .

Для определения температурного режима помещения измеряют температуру воздуха по вертикали и горизонтали в трех точках: у наружной стены (в 10 см от нее), в центре и у внутренней стены (в 10 см от нее). Измерения проводят на уровне 0,1–1,5 м от пола. Отсчет показаний производят спустя 10 минут после того, как термометр установлен. Рассчитывается средняя арифметическая величина из шести полученных значений температур, которые заносят в протокол и анализируют перепады температуры по вертикали и горизонтали.

Среднюю температуру помещения по горизонтали вычисляют по трем значениям измерений в различных точках, проведенным на высоте 1,5 м.

Изменение температуры по горизонтали от наружной стены к внутренней не должно превышать 2 о С, а по вертикали – 2,5 о С на каждый метр высоты. Колебания температуры в течение суток не должны превышать 3 о С.

Определение влажности воздуха

Каждой температуре воздуха соответствует определенная степень насыщения его водяными парами: чем температура выше, тем больше степень насыщения, так как теплый воздух вмещает большее количество водяных паров, чем холодный воздух.

Для характеристики влажности применяют следующие понятия.

Абсолютная влажность – количество водяных паров в г в 1 м 3 воздуха.

Максимальная влажность – количество водяных паров в г, необходимое для полного насыщения 1 м 3 воздуха при той же температуре.

Относительная влажность – отношение абсолютной влажности к максимальной, выраженное в процентах.

Дефицит насыщения – разность между максимальной и абсолютной влажностью.

Точка росы – температура, при которой находящиеся в воздухе водяные пары насыщают пространство.

Наибольшее гигиеническое значение имеют относительная влажность и дефицит насыщения, которые дают ясное представление о степени насыщения воздуха водяными парами и скорости испарения влаги с поверхности тела при той или иной температуре.

Абсолютная влажность дает представление об абсолютном содержании водяных паров в воздухе, но не показывает степени его насыщения, поэтому и является менее показательной величиной, чем относительная влажность.

Влажность воздуха определяется приборами, которые называются психрометрами. Они бывают двух видов: психрометр Августа и психрометр Ассмана .

Для определения влажности воздуха психрометром Августа прибор следует установить на уровне 1,5 м от пола и провести наблюдения в течение 10–15 минут.

При использовании психрометра Августа абсолютная влажность вычисляется по формуле Реньо:

К = f a ( t – t 1) В , где

К – абсолютная влажность в мм. рт. ст.;

f – максимальная влажность при температуре влажного термометра (ее значение берут из таблицы 4);

а – психрометрический коэффициент (для комнатного воздуха 0,0011);

t – температура сухого термометра;

t 1 – температура влажного термометра;

В – атмосферное давление.

Вычисление относительной влажности производится по формуле:

R – относительная влажность в %;

К – абсолютная влажность;

F –максимальная влажность при температуре сухого термометра(берут из таблицы 4).

Пример: при исследовании обнаружилось, что температура сухого термометра составляет 18 о С, а влажного 13 о С; барометрическое давление – 762 мм рт.ст. По таблице 4 «Максимальная упругость водяных паров при разных температурах (мм рт.ст)» находим величину f – максимальное напряжение водяных паров при 13 о С, которое равняется 11,23 мм рт.ст., и подставляем найденные величины в формулу:

К = 11,23–0,0011 (18–13) 762 = 7,04 мм рт.ст.

Перевод абсолютной влажности в относительную произведем по формуле:

R = (K / F ) 100,

В нашем примере F при 18 о С по табл.4 равна 15,48 мм рт.ст., откуда:

R = (7,04 / 15,48) 100 = 45%

Для более точных замеров применяют аспирационный психрометр Ассмана (рис.2). Психрометр Ассмана имеет два ртутных термометра, заключенных в металлический футляр, предохраняющий прибор от воздействия теплового излучения. Один из термометров (нижняя его часть) покрыт материей и требует перед работой прибора увлажнения. Механическое аспирационное устройство – вентилятор, расположенный в верхней части психрометра, обеспечивает постоянную скорость движения воздуха около термометров, что позволяет проводить измерения при постоянных условиях.

Перед определением влажности воздуха материю на резервуаре одного из термометров («влажный») смачивают водой, затем часовой механизм вентилятора заводят на 3–4 мин. Снятие показаний термометров проводят в тот момент, когда температура влажного термометра станет минимальной.

Рис 2. Психрометр Ассмана

Расчет абсолютной влажности производится с помощью формулы Шпрунга:

(обозначения и формулу для определения относительной влажности см. выше).

Пример: Допустим, что после работы прибора в течение 3–4 минут температура сухого термометра равнялась 18 о С, а влажного 13 о С. Барометрическое давление на момент исследования составляло 762 мм рт.ст. По таблице 4 «Максимальная упругость водяных паров при разных температурах (мм рт.ст)» находим величину F – максимальная упругость водяных паров при 13 о С, которая равняется 11,23 мм рт.ст., и, подставляя найденную величину в формулу, получаем:

К = 11,23 – 0,5(18–13)(762/755) = 8,71 мм рт.ст.

Переведем найденную абсолютную влажность в относительную по формуле:

R = (К / F ) 100,

В нашем примере:

R = (8,71 / 15,48) 100 = 56,3%

Кроме расчетного определения относительной влажности по формулам, ее можно находить сразу по психрометрическим таблицам 5 и 6, используя данные, полученные с помощью психрометра Августа и Ассмана.

Относительная влажность воздуха в жилых и производственных помещениях допускается в пределах от 30 до 60%.

Определение скорости движения воздуха

Скорость движения воздуха оказывает определенное влияние на тепловой баланс организма человека. Кроме того, большая подвижность воздуха в больничных помещениях способствует поднятию в воздух осевшей пыли, ее перемещению и вместе с микроорганизмами создает условия для возможного заражения людей.

Для определения больших скоростей воздуха в открытой атмосфере используют анемометры (рис.3). Ими измеряют скорость движения воздуха в пределах от 1 до 50 м/с.

Рис 3. Анемометр

Определение малых скоростей движения воздуха от 0,1 до 1,5 м/с осуществляется с помощью кататермометра (от греч. kata – движение сверху вниз) – особого спиртового термометра (рис.4). Этот прибор позволяет определить величину потери тепла физическим телом в зависимости от температуры и скорости движения окружающего воздуха.

При этом сначала определяют охлаждающую способность воздуха. Для этого погружают прибор в горячую воду, пока спирт не поднимется до половины верхнего расширения капилляра. Затем его вытирают насухо и определяют время в секундах снижения уровня спирта с 38 о С до 35 о С.


Рис 4. Кататермометр

Вычисление величины охлаждающей способности воздуха в милликалориях с 1 см 2 за секунду (Н ) проводится по формуле:

F – факторприбора – постоянная величина, показывающая количество тепла, теряемое с 1 см 2 поверхности кататермометра за время опускания столбика спирта с 38 о С до 35 о С (обозначен на тыльной стороне прибора);

а – число секунд, в течение которых столбик спирта опускается с 38 о С до 35 о С.

Скоростьдвижения воздуха в м/сек. (V ) определяется по формуле:

, где

H – охлаждающая способностьвоздуха.

Q – разность между средней температурой тела 36,5 о С и температурой окружающего воздуха;

0,2 и 0,4 – эмпирические коэффициенты.

Скорость движения воздуха можно определить также по таблице 7.

Нормальной скоростью движения воздуха в жилых и учебных помещениях считают скорость 0,2–0,4 м/с. Скорость движения воздуха в палатах лечебно-профилактических учреждений должна составлять от 0,1 до 0,2 м/с.


Таблица 3

Сводные данные проведенных исследований

Гигиеническое заключение. На основании полученных результатов оценивают соответствие факторов микроклимата оптимальным условиям. В случае отклонения от нормативов вносят рекомендации по их улучшению.

Контрольные вопросы:

1. Микроклимат. Понятие, факторы, его определяющие.

2. Метеозависимые заболевания.

3. Влияние пониженного и повышенного атмосферного давления на организм человека.

4. Влияние низкой и высокой температуры воздуха на организм человека.

5. Влажность воздуха. Гигиеническое значение.

6. Оптимальные значения температуры, относительной влажности и скорости движения воздуха в лечебно-профилактических учреждениях. Документы, их регламентирующие.

7. Приборы для оценки микроклимата помещений.

8. Преимущества аспирационного психрометра Ассмана перед психрометром Августа.

9. Приборы для непрерывной, длительной регистрации температуры, влажности и атмосферного давления воздуха.


Таблица 4

Максимальная упругость водяных паров при разных температурах (мм рт.ст.)


Таблица 5

Определение относительной влажности по показаниям психрометра Августа при скорости движения воздуха в помещении 0,2 м/сек


Таблица 6

Определение относительной влажности по показаниям психрометра Ассмана


Таблица 7

Скорости движения воздуха менее 1 м/с (с учетом поправок на температуру), H=F/a

учреждений и аптек, за исключением инфекционных больниц (отделений) оборудуются приточно-вытяжной вентиляцией с механическим побуждением. В инфекционных больницах (отделениях) вытяжная вентиляция организуется автономно из каждого бокса, полубокса и от каждой палатной секции. При этом вытяжка на естественной тяге оборудуется дефлектором, а приток – механическим побуждением и подачей воздуха в коридор.

Кондиционирование воздуха организуется в операционных, наркозных, родовых, послеоперационных палатах, отделениях реанимации, интенсивной терапии, одно- и двухкоечных палатах для больных с ожогами, в палатах, предназначенных для размещения 505 коек, в отделениях для новорожденных и детей грудного возраста, а также во всех палатах в отделениях для недоношенных и травмированных детей.

Система кондиционирования должна обеспечить в операционных, наркозных, послеоперационных палатах, родовых, отделениях реанимации и интенсивной терапии относительную влажность воздуха 55-60%, скорость движения воздуха не более 0,15 м/с.

Самостоятельные системы приточно-вытяжной вентиляции предусматриваются для операционных блоков (отдельно для септических и асептических отделений), отделений реанимации, интенсивной терапии (отдельно для поступающих в больницы с улицы и из отделений больниц), родовых – отдельно для физиологического и обсервационного отделений; палат акушерских отделений больниц (родильных домов) – отдельно для физиологического и обсервационного отделений, палат для новорожденных, недоношенных и травмированных детей; для рентгеновских кабинетов, лабораторий, грязе- и водолечения, сероводородных и радоновых ванн лабораторий приготовления радона, санитарных узлов, холодильных камер, хозрасчетных аптек.

Наружный воздух, подаваемый системами приточной вентиляции, подвергается очистке в фильтрах. Рециркуляция воздуха не допускается.

Воздух, подаваемый в операционные, наркозные, родовые, послеоперационные палаты, реанимационные, палаты интенсивной терапии, в одно- и двухкоечные палаты для больных с ожогами кожи, платы для новорожденных и детей грудного возраста, для недоношенных и травмированных детей дополнительно очищается в бактериологических фильтрах. В этом случае не допускается установка масляных фильтров в качестве 1-й ступени очистки воздуха и устройство воздуховодов, отводящих воздух после бактериологических фильтров из оцинкованной жести.

Отопление . В учреждениях здравоохранения и социального обеспечения применяется исключительно водяное отопление. Мощность накала радиаторов следует рассчитывать так, чтобы температура их поверхности была не более 90°С, иначе будет пригорать пыль. Чтобы облегчить уборку, радиаторы нужно монтировать у стены, а не в нишах. Еще лучше использовать панельные радиаторы, которые можно разместить поодиночке

Микроклимат - комплекс физических факторов внутренней среды помещений, оказывающий влияние на тепловой обмен организма и здоровье человека. К микроклиматическим показателям относятся температура, влажность и скорость движения воздуха, температура поверхностей ограждающих конструкций, предметов, оборудования, а также некоторые их производные (градиент температуры воздуха по вертикали и горизонтали помещения, интенсивность теплового излучения от внутренних поверхностей).

Воздействие комплекса микроклиматических факторов отражается на теплоощущении человека и обусловливает особенности физиологических реакций организма. Температурные воздействия, выходящие за пределы нейтральных колебаний, вызывают изменения тонуса мышц, периферических сосудов, деятельности потовых желез, теплопродукции. При этом постоянство теплового баланса достигается за счет значительного напряжения терморегуляции, что отрицательно сказывается на самочувствии, работоспособности человека, его состоянии здоровья.

Тепловое состояние, при котором напряжение системы терморегуляции незначительно, определяется как тепловой комфорт. Он обеспечивается в диапазоне оптимальных микроклиматических условий, в пределах которого отмечается наименьшее напряжение терморегуляции и комфортное теплоощущение. Разработаны оптимальные нормы М., которые должны обеспечивать в лечебно-профилактических и детских учреждениях, жилых, административных зданиях, а также на промышленных объектах, где оптимальные условия необходимы по технологическим требованиям. Санитарные нормы оптимального М. дифференцированы для холодного и теплого периодов года (табл. 1 ).

Таблица 1

Оптимальные нормы температуры, относительной влажности и скорости движения воздуха в жилых, общественных, административных помещениях

Показатели

Период года

холодный и переходный

Температура

Относительная влажность, %

Скорость движения воздуха, м/с

Не более 0,25

Не более 0,1-0,15

Для помещений лечебно-профилактических учреждений нормируется расчетная температура воздуха, при этом для помещений различного назначения (палат, кабинетов и процедурных) эти нормы дифференцируются. Например, в палатах для взрослых больных, помещениях для матерей в детских отделениях, палатах для туберкулезных больных температура воздуха должна быть 20°; в палатах для овых больных, послеродовых палатах - 22°; в палатах для недоношенных, травмированных, грудных и новорожденных детей - 25°.

В тех случаях, когда по ряду технических и других причин оптимальные нормы М. не могут быть обеспечены, ориентируются на допустимые нормы (табл. 2 ).

Таблица 2

Допустимые нормы температуры, относительной влажности и скорости движения воздуха в жилых, общественных, административно-бытовых помещениях

Показатели

Период года

холодный и переходный

Температура

Не более 28°

для районов с расчетной температурой воздуха 25°

Не более 33°

Относительная влажность, %

в районах с расчетной относительной влажностью воздуха более 75%

Скорость движения воздуха, м/с

Не более 0,5

Не более 0,2

Допустимые санитарные нормы М. в жилых и общественных зданиях обеспечиваются с помощью соответствующего планировочного оборудования, теплозащитных и влагозащитных свойств ограждающих конструкций.

При проведении текущего санитарного надзора в жилых, общественных, административных и лечебно-профилактических учреждениях температуру воздуха измеряют на уровне 1,5 и 0,05 м от пола в центре помещения и в наружном углу на расстоянии 0,5 м от стен; относительную влажность воздуха определяют в центре помещения на высоте 1,5 м от пола; скорость движения воздуха устанавливают на уровне 1,5 и 0,05 м от пола в центре помещения и на расстоянии 1,0 м от окна; температуру на поверхности ограждающих конструкций и отопительных приборов измеряют в 2-3 точках поверхности.

При проведении санитарного надзора в многоэтажных зданиях измерения производят в помещениях, расположенных на разных этажах, в торцовых и рядовых секциях с односторонней и двусторонней ориентацией квартир при температуре наружного воздуха, близкой к расчетной для данных климатических условий.

Градиент температур воздуха по высоте помещения и по горизонтали не должен превышать 2°. Температура на поверхности стен может быть ниже температуры воздуха в помещении не более чем на 6°, пола - на 2°, разница между температурой воздуха и температурой оконного стекла в холодный период года не должна превышать в среднем 10-12°, а тепловое воздействие на поверхность тела человека потока инфракрасного излучения от нагретых отопительных конструкций-0,1 кал/см 2 × мин.

Производственный микроклимат . На М. производственных помещений существенное влияние оказывает технологический процесс, на М. рабочих мест, расположенных на открытой территории, - климат и погода местности.

На ряде производств, перечень которых устанавливается отраслевыми документами, согласованными с органами государственного санитарного надзора, предусматривается оптимальный производственный микроклимат. В кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники, а также в других помещениях, в которых выполняется работа операторского типа, должны обеспечиваться оптимальные величины М.: температура воздуха 22-24°, влажность - 40-60%, скорость движения воздуха - не более 0,1 м/с вне зависимости от периода года. Оптимальные нормы достигаются в основном за счет применения систем кондиционирования воздуха. Однако технологические требования некоторых производств (прядильных и ткацких цехов текстильных фабрик, отдельных цехов пищевой промышленности), а также технические причины и экономические возможности ряда отраслей промышленности (мартеновские, доменные, литейные, кузнечные цехи металлургической промышленности, предприятия тяжелого машиностроения, стекольного производства и пищевой промышленности) не позволяют обеспечить оптимальные нормы производственного микроклимата. В этих случаях на постоянных и непостоянных рабочих местах, в соответствии с ГОСТ устанавливаются допустимые нормы М.

В зависимости от характера поступления тепла и превалирования того или иного показателя М. выделяют цеха преимущественно с конвекционным (например, продуктовые цеха сахарных заводов, машинные залы электростанций, термические цеха, глубокие шахты) или радиационным нагревающим (например, металлургическое, стекольное производство) микроклиматом. Конвекционный нагревающий М. характеризуется высокой температурой воздуха, иногда сочетающейся с высокой его влажностью (красильные отделения текстильных фабрик, теплицы, агломерационные цехи), увеличивающей степень перегревания организма человека (см. Перегревание организма ). Радиационный нагревающий М. характеризуется преобладанием лучистого тепла.

При несоблюдении мер профилактики у лиц, работающих длительное время в нагревающем М., могут наблюдаться дистрофические изменения миокарда, астенический синдром, снижается иммунологическая реактивность организма, что способствует повышению заболеваемости рабочих острыми респираторными заболеваниями, ангиной, бронхитом, ом, ми. При перегревании организма усиливается неблагоприятное действие химических веществ, пыли, шума, быстрее наступает усталость.

Таблица 3

Оптимальные величины температуры и скорости движения воздуха в рабочей зоне производства иных помещений в зависимости от категории работ и периодов года

Энергозатраты, Вт

Периоды года

холодный

холодный

Температура (°C)

Скорость движения воздуха, (м/с )

легкая, Ia

легкая, Iб

средней тяжести, IIa

средней тяжести, IIб

тяжелая, III

Охлаждающий М. в производственных помещениях может быть преимущественно конвекционным (низкая температура воздуха, например, в отдельных подготовительных цехах пищевой промышленности), преимущественно радиационным (низкая температура ограждений в холодильных камерах) и смешанным. Охлаждение способствует возникновению респираторных заболеваний, обострению заболеваний сердечно-сосудистой системы. При охлаждении ухудшается координация движений и способность выполнять точные операции, что ведет как к снижению работоспособности, так и увеличению вероятности производственных травм. При работе на открытой территории в зимний период появляется возможность отморожений , затрудняется использование средств индивидуальной защиты (обмерзание респираторов при дыхании).

Санитарные нормы предусматривают обеспечение оптимальных или допустимых параметров М. производственных помещений с учетом 5 категорий работ, характеризующихся различным уровнем энерготрат (табл. 3 ). Нормы регламентируют температуру, влажность, скорость движения воздуха и интенсивность теплового облучения работающих (с учетом площади облучаемой поверхности тела), температуру внутренних поверхностей, ограждающих рабочую зону конструкций (стен, пола, потолка) или устройств (например, экранов), температуру наружных поверхностей технологического оборудования, перепады температуры воздуха по высоте и горизонтали рабочей зоны, ее изменения в течение смены, а также предусматривают необходимые мероприятия по защите рабочих мест от радиационного охлаждения. исходящего от поверхности стекла оконных проемов (в холодный период года) и нагревания от попадания прямых солнечных лучей (в теплый период).

Профилактика перегревания работающих в нагревающем М. осуществляется за счет уменьшения внешней тепловой нагрузки путем автоматизации технологических процессов, дистанционного управления, использования коллективных и индивидуальных средств защиты (теплопоглощающие и теплоотражающие экраны, воздушные души, водяные завесы, системы радиационного охлаждения), регламентации времени непрерывного пребывания на рабочем месте и в зоне отдыха с оптимальными микроклиматическими условиями, организации питьевого режима.

Для предупреждения перегревания работающих в летний период на открытой территории используется спецодежда из воздухо- и влагопроницаемых тканей, материалов с высокими отражающими свойствами, а также организуется отдых в санитарно-бытовых помещениях с оптимальным М., который может быть обеспечен путем использования кондиционеров или систем радиационного охлаждения. Важное значение имеют мероприятия, направленные на повышение резистентности организма к тепловому воздействию, включая и адаптацию к этому фактору.

При работе в охлаждающем М. профилактические мероприятия предусматривают использование в первую очередь спецодежды (см. Одежда ), обуви (см. Обувь ), головных уборов и рукавиц, теплозащитные свойства которых должны соответствовать метеорологическим условиям, тяжести выполняемой работы. Регламентируются время непрерывного пребывания на холоде и перерывы на отдых в санитарно-бытовых помещениях, которые входят в рабочее время. Эти помещения дополнительно оборудуются устройствами для обогревания рук и ног, а также приспособлениями для просушивания спецодежды, обуви, рукавиц. Для предупреждения обмерзания респираторов применяются устройства для подогревания вдыхаемого воздуха.

Библиогр.: Гигиеническое нормирование факторов производственной среды и трудового процесса, под ред. Н.Ф. Измерена и А.А. Каспарова, с. 71, М., 1986; Губернский Ю. Д. и Кореневская Е.И. Гигиенические основы кондиционирования микроклимата жилых и общественных зданий, М., 1978, библиогр.; Руководство по гигиене труда, под ред. Н.Ф. Измерова, т. 1, с 91, М., 1987, Шахбазян Г.X. и Шлейфман Ф.М. Гигиена производственного микроклимата, Киев, 1977, библиогр.

Изменения температуры не должны превышать:

В направлении от внутренней до наружной стены - 2°С

В вертикальном направлении - 2.5°С на каждый метр высоты

В течение суток при центральном отоплении - 3°С

Относительная влажность воздуха должна составлять 30-60 % Скорость движения воздуха - 0.2-0.4 м/с

Методы комплексной оценки влияния микроклимата на организм.

Отдельное рассмотрение факторов микроклимата не позволяет объек­тивно оценить влияние микроклимата на организм, так как все факторы взаимосвязаны и могут ослаблять или усиливать друг друга (температура и скорость движения воздуха, температура и влажность и тд.).

Микроклимат больничных помещений определяется тепловым состоянием среды, обусловливающей теплоощущение человека и зависящей от температуры, влажности, скорости движения воздуха, температуры ограждающих конструкций. Комфортные условия микроклимата обеспечиваются системами отопления и вентиляции, устройствами кондиционирования воздуха отдельных помещений.Сущ различные типы микроклимата:

1)комфортгый тип-тепловой комфорт обеспечивается наиболее физиологично,без функциональных перегрузок.

2)Нагревающий и охлаждающий типы микроклимата-механизмы терморегуляции находяться в состоянии напряжения.

Оценивают влияние микроклимата на орг-м чел-ка(определяют температуру кожи,исследуют потоотделение,оценивают тепловое ощущение чел-ка)

Для оценки и параметров микроклимата используют:ртутные и спиртовые термометры;термометры подразделяются на станционные и аспирационные,минимальные и максимальные(Т воздуха)Относительная влажность воздуха измеряется гигрометром или психометром(станционный и аспирационный(Ассмана))Для подвижности воздуха применяют кататермометры(для малых скоростей)и анемометры(для больших скоростей)

2. Существуют методы комплексной оценки микроклимата и его влияния на организм:

1) Оценка охлаждающей способности воздуха. Охлаждающая спо­собность определяется с помощью кататермометра и измеряется в мкал/см"с. Норма (тепловой комфорт) для сидячего образа жизни-5.5-7 мкал/см2с. При подвижно м образе жизни - 7.5-8 мкал/см2-с. Для больших помещений, где теплоотдача выше норма охлаждаю­щей способности составляет примерно 4-5.5 мкал/см с.



2) Определение ЭЭТ (эквивалентная эффективная температура), ра­диационной температуры и РТ (результирующая температура).

1. Эквивалентная эффективная температура (ЭЭТ) определяется по таблице с учетом скорости движения воздуха и относительной влажности.

2. Средняя радиационная температура характеризует тепловое действие солнечной радиации. Она определяется с помощью ша­рового термометра. Средняя радиационная температура может использоваться как самостоятельный показатель, характеризую­щий тепловое излучение, а может использоваться для определе­ния результирующей температуры.

3. Результирующая температура (РТ) позволяет определить суммарное тепловое действие на человека температуры, влажно­сти, скорости движения воздуха и излучения. Определение РТ производится по номограммам, после того как определены зна­чения всех четырех указанных выше факторов микроклимата (влажность, скорость движения воздуха, температура воздуха, ра­диационная температура). Имеются номограммы для определения РТ при легком и тяжелом физическом труде. Комфортная РТ при покое равна 19°С, для легкого физического труда - 16-17°С

3) Объективные методы:

Определение температуры кожи

Исследование интенсивности потоотделения

Исследование частоты пульса, артериального давления и тд.

Холодовая проба - изучение адаптации организма к холоду. Принцип заключается в том, что на выбранном участке кожи из­меряют температуру электротермометром, затем прикладывают лед на 30 секунд после чего измеряют температуру кожи через каждые 1-2 минуты в течение 20-25 минут. После этого оценива­ют адаптацию к холоду:

Норма - температура возвращается к исходному уровню через 5 минут

Удовлетворительная адаптация - через 10 минут

Отрицательный результат - 15 минут и более.

3,6. Гигиенические требования к отоплению, венти­ляции и освещению больничных помещений. Гигиеническая характеристика различных систем центрального отопления.

1. Воздушное отопление.

Наружный воздух нагревается до 45-50 градусов в камерах и через кана­лы в стенах подается в помещение, откуда забирается посредством вытяжных каналов.

Недостатки:

1) Высокая температура и низкая влажность подаваемого воздуха

2) Неравномерность обогрева помещения

3) Возможность загрязнения приточного воздуха пылью

Показано для помещений с высокой влажностью, но в целом для ото­пления жилых помещений нецелесообразно.

2. Система парового отопления.

Устройство:

Имеются паровые котлы, где образуется пар, который идет по трубам и, проходя через калорифер конденсируется, отдавая тепло и нафевая батареи, образовавшаяся вода возвращается обратно.

Паровое отопление хотя широко использовалось вплоть до 70-х годов, в дальнейшем не нашло распространения. И хотя оно было экономически вы­годным оно повсеместно было заменено водяным отоплением.

Недостатки парового отопления

1) Практически не регулируется, так как пар всегда имеет температуру около 100 фадусов. Поэтому данная система отопления не может создавать в помещении различную температуру в зависимости от тем­пературы наружного воздуха.- .

2) Продукты неполного сгорания дают запах в помещении.

3) Создает шум, так как пузырьки пара издают металлические звуки.

4) Если образовалось микроотверстие, то пар заполняет помещение. Влажность при этом поднимается до 100 %

5) Высокая влажность воздуха в помещении и при нормальном функ­ционировании.

3. Система водяного отопления.

По устройству похожа на систему парового отопления, но по трубам идет не пар, а горячая вода.

Отопление должно поддерживать постоянную комфортную температуру в помещении. Поэтому температура воды, идущей по трубам должна зависеть от температуры наружного воздуха:

Таким образом, большим преимуществом водяного отопления является возможность регулировки, то есть способность при различной температуре наружного воздуха обеспечивать оптимальную температуру в помещении. Отопление должно работать в строгом соответствии с температурой окру­жающей среды.

Водяное отопление наиболее распространено в настоящее время.

4. Лучистое (панельное) отопление.

Принцип заключается - в нагреве внутренних поверхностей наружных-стен (панельная часть здания). В стенах прокладываются трубы водяного или парового отопления. В том случае, если стены холоднее тела человека (так обычно и бывает), то человек теряет тепло путем излучения к этим холодным поверхностям из-за разницы температуры. При панельном отоплении стены нагреваются до 35-45 градусов, поэтому потери тепла путем излучения резко уменьшаются, более того стены сами излучают тепло, которое поглощается телом человека. В связи с этим человек ощущает такой же тепловой ком­форт при температуре воздуха в.помещении 17-18 градусов, как при 19-20 градусах в обычных условиях.

Наконец, еще одним преимуществом лучистого отопления является воз­можность использования его для охлаждения воздуха при пропускании, на­пример, воды из артезианской скважины (10-15 градусов).

Микроклимат помещений лечебных учреждений определяется сочетанием температуры, влажности, подвижности воздуха, температуры окружающих поверхностей и их тепловым излучением. Параметры микроклимата определяют теплообмен организма человека и оказывают существенное влияние на функциональное состояние различных систем организма, самочувствие, работоспособность и здоровье.
Высокие температуры оказывают отрицательное воздействие на здоровье человека. Работа в условиях высокой температуры сопровождается интенсивным потоотделением, что приводит к обезвоживанию организма, потере минеральных солей, вызывает стойкие изменения в деятельности сердечно - сосудистой системы, ослабляется внимание, замедляются реакции и т.д.
При воздействии на организм человека отрицательных температур наблюдается сужение сосудов пальцев рук и ног, изменяется обмен веществ. Длительное воздействие этих температур приводит к устойчивым заболеваниям внутренних органов.
Параметры микроклимата зависят от тепло- физических особенностей технологических процессов, климата, сезона года, условий отопления и вентиляции в учреждениях здравоохранения.
Борьба с неблагоприятным влиянием производственного микроклимата осуществляется с использованием технологических, санитарно- технических и медико- профилактических мероприятий.
К технологическим мероприятиям относятся: замена старых и внедрение новых технологических процессов и оборудования, автоматизация и механизация процессов, дистанционное управление.
Санитарно- технические мероприятия направлены на локализацию тепловыделений и теплоизоляции, т.е. герметизацию оборудования, устройство вентиляционных систем, использование средств защиты и т.д.
К медико - профилактическим мероприятиям относятся: организация рационального режима труда и отдыха, прохождение медицинских осмотров и т.д.
Требования к отоплению, вентиляции, микроклимату и воздушной среде помещений установлены Санитарно-эпидемиологическими правилами и нормативами СанПиН 2.1.3.1375-03 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров».
Системы отопления, вентиляции и кондиционирования воздуха должны обеспечивать оптимальные условия микроклимата и воздушной среды помещений лечебных учреждений.
Параметры расчетной температуры, кратности воздухообмена, категории по чистоте помещения лечебных учреждений, в т.ч. в дневных стационарах, приведены в приложении №5 к СанПиН 2.1.3.1375-03.
Нагревательные приборы должны иметь гладкую поверхность, допускающую легкую очистку, их следует размещать у наружных стен, под окнами, без ограждений. Не допускается расположение в палатах нагревательных приборов у внутренних стен.
В операционных, предоперационных, реанимационных залах, наркозных, родовых, электросвечения и помещениях психиатрических отделений, а также в палатах интенсивной терапии и послеоперационных палатах в качестве нагревательных приборов следует применять нагревательные приборы с гладкой поверхностью, устойчивой к ежедневному воздействию моющих и дезинфицирующих растворов, исключающие адсорбирование пыли и скопление микроорганизмов.

При устройстве ограждений отопительных приборов в административно-хозяйственных помещениях, в детских больницах используется материал, разрешенный для применения в установленном порядке. При этом должен быть обеспечен свободный доступ для текущей эксплуатации и уборки отопительных приборов.
В качестве теплоносителя в системах центрального отопления больниц и родильных домов используется вода с предельной температурой в нагревательных приборах 85° С. Использование других жидкостей и растворов (антифриза и др.) в качестве теплоносителя в системах отопления лечебных учреждений не допускается.
Здания лечебных учреждений должны быть оборудованы системами приточно-вытяжной вентиляции с механическим побуждением и естественной вытяжной без механического побуждения.
В инфекционных, в том числе туберкулезных отделениях, вытяжная вентиляция с механическим побуждением устраивается посредством индивидуальных каналов в каждом боксе и полубоксе, которые должны быть оборудованы устройствами обеззараживания воздуха.
При отсутствии в инфекционных отделениях приточно-вытяжной вентиляции с механическим побуждением, должна быть оборудована естественная вентиляция с обязательным оснащением каждого бокса и полубокса устройством обеззараживания воздуха рециркуляционного типа, обеспечивающая эффективность инактивации микроорганизмов и вирусов не менее 95%.
Проектирование и эксплуатация вентиляционных систем должны исключать перетекание воздушных масс из «грязных» зон в «чистые» помещения.
Помещения лечебных учреждений, кроме операционных, помимо приточно-вытяжной вентиляции с механическим побуждением, оборудуются естественной вентиляцией (форточки, откидные фрамуги и др.), оборудованные системой фиксации.
Забор наружного воздуха для систем вентиляции и кондиционирования производится из чистой зоны на высоте не менее 2 м от поверхности земли. Наружный воздух, подаваемый приточными установками, подлежит очистке фильтрами грубой и тонкой структуры в соответствии с действующей нормативной документацией.
Воздух, подаваемый в операционные, наркозные, родовые, реанимационные, послеоперационные палаты, палаты интенсивной терапии, а также в палаты для больных с ожогами кожи, больных СПИДом и других аналогичных лечебных помещениях должен обрабатываться устройствами обеззараживания воздуха, обеспечивающими эффективность инактивации микроорганизмов и вирусов, находящихся в обрабатываемом воздухе не менее 95% (фильтры высокой эффективности H11-H14).
Помещения операционных, палат интенсивной терапии, реанимации, родовых, процедурных и других помещений в которых сопровождается выделением в воздух вредных веществ, должны быть оборудованы, местными отсосами или вытяжными шкафами.
Содержание лекарственных средств в воздухе операционных, родовых палат, палат интенсивной терапии, реанимации, процедурных, перевязочных и других аналогичных помещений лечебных учреждений не должны превышать предельно-допустимые концентрации, приведенные в приложении № 6 к СанПиН 2.1.3.1375-03.
Уровни бактериальной обсемененности воздушной среды помещений, в зависимости от их функционального назначения и класса чистоты, не должны превышать допустимых, приведенных в приложении № 7 к СанПиН 2.1.3.1375-03.
Кондиционирование воздуха следует предусматривать в операционных, наркозных, родовых, послеоперационных палатах, палатах интенсивной терапии, онкогематологических больных, больных СПИДом, с ожогами кожи, реанимационных, а также в палатах для новорожденных детей, грудных, недоношенных, травмированных детей и других аналогичных лечебных помещениях. В палатах, которые полностью оборудуются кювезами, кондиционирование не предусматривается.
Воздуховоды систем приточной вентиляции (кондиционирования воздуха) после фильтров высокой эффективности (Н11-Н14) предусматриваются из нержавеющей стали.
Применение сплит - систем допускается при наличии фильтров высокой эффективности (Н11-Н14) только при соблюдении правил регламентных работ. Сплит - системы, устанавливаемые в учреждении, должны иметь положительное санитарно-эпидемиологическое заключение, выданное в установленном порядке.
Кратность воздухообмена выбирается исходя из расчетов обеспечения заданной чистоты и поддержания газового состава воздуха. Относительная влажность воздуха должна быть не более 60%, скорость движения воздуха - не более 0,15 м/сек.
Воздуховоды, воздухораздающие и воздухоприемные решетки, венткамеры, вентустановки и другие устройства должны содержаться в чистоте, не должны иметь механических повреждений, следов коррозии, нарушения герметичности.
Вентиляторы и электродвигатели не должны создавать посторонних шумов.
Не реже 1 раза в месяц следует производить контроль степени загрязненности фильтров и эффективности работы устройств обеззараживания воздуха. Замена фильтров должна осуществляться по мере его загрязнения, но не реже, чем рекомендовано предприятием-изготовителем.
Общеобменные приточно-вытяжные и местные вытяжные установки должны включаться за 5 минут до начала работы и выключаться через 5 минут после окончания работы.
В операционных и предоперационных вначале включаются приточные вентиляционные системы, затем вытяжные, или одновременно приточные и вытяжные.
Во все помещения воздух подается в верхнюю зону помещения. В стерильные помещения воздух подается ламинарными или слаботурбулентными струями (скорость воздуха < = 0,15 м/сек).
Воздуховоды приточно-вытяжной вентиляции (кондиционирования) должны иметь внутреннюю поверхность, исключающую вынос в помещения частиц материала воздуховода или защитного покрытия. Внутреннее покрытие должно быть несорбирующим.
Для размещения оборудования систем вентиляции следует выделить специальные помещения, раздельные для приточных и вытяжных систем и не примыкающих по вертикали и горизонтали к кабинетам врачей, операционным, палатам и другим помещениям постоянного пребывания людей.
В помещениях для вытяжных систем следует предусматривать вытяжную вентиляцию с однократным воздухообменом в 1 час, для приточных систем - приточную вентиляцию с двукратным воздухообменом.
Помещения вентиляционного оборудования следует использовать только по прямому назначению.
В помещениях, к которым предъявляются требования асептических условий, предусматривается скрытая прокладка воздуховодов, трубопроводов, арматуры. В остальных помещениях возможно размещение воздуховодов в закрытых коробах.
Допускается естественная вытяжная вентиляция для отдельно стоящих зданий высотой не более 3-х этажей (в приемных отделениях, палатных корпусах, отделениях водолечения, инфекционных корпусах и отделениях). При этом приточная вентиляция предусматривается с механическим побуждением и подачей воздуха в коридор.
Вытяжная вентиляция с механическим побуждением без устройства организованного притока предусматривается из помещений: автоклавных, моек, душевых, уборных, санитарных комнат, помещений для грязного белья, временного хранения отходов и кладовых для хранения дезинфекционных средств.
Воздухообмен в палатах и отделениях должен быть организован так, чтобы максимально ограничить перетекание воздуха между палатными отделениями, между палатами, между смежными этажами.
Количество приточного воздуха в палату должно составлять 80 м 3 /час на 1 больного.
Для создания изолированного воздушного режима палат их следует проектировать со шлюзом, имеющим сообщение с санузлом, с преобладанием вытяжки в последнем.
При входе в отделение должен быть оборудован шлюз с устройством в нем вытяжной вентиляции с самостоятельным каналом (от каждого шлюза).
Для исключения возможности поступления загрязненного воздуха из лестнично-лифтовых холлов в палатные отделения целесообразно устройство между ними переходной зоны с обеспечением в ней подпора воздуха.
Архитектурно-планировочные решения и системы воздухообмена стационара должны исключать перенос инфекций из палатных отделений и других помещений в операционный блок и другие помещения, требующие особой чистоты воздуха.
Для исключения возможности поступления воздушных масс из палатных отделений, лестнично-лифтового холлов и других помещений в операционный блок, необходимо устройство между указанными помещениями и операционным блоком шлюза с подпором воздуха.
Движение воздушных потоков должно быть обеспечено из операционных в прилегающие к ним помещения (предоперационные, наркозные и др.), а из этих помещений в коридор. В коридорах необходимо устройство вытяжной вентиляции.
Количество удаляемого воздуха из нижней зоны операционных должно составлять 60%, из верхней зоны - 40%. Подача свежего воздуха осуществляется через верхнюю зону, при этом приток должен преобладать над вытяжкой.
Необходимо предусматривать обособленные (изолированные) системы вентиляции и кондиционирования для чистых и гнойных операционных, родильных блоков, реанимационных, онкогематологических, ожоговых отделений, перевязочных, отдельных палатных секций, рентгеновских и других спецкабинетов.
Профилактический осмотр и ремонт систем вентиляции и кондиционирования воздуха воздуховодов должен проводиться согласно утвержденному графику, не реже 2 раз в год. Устранение текущих неисправностей, дефектов должно проводиться безотлагательно.
Администрацией лечебного учреждения организуется контроль за параметрами микроклимата и загрязненностью химическими веществами воздушной среды, работой вентиляционных систем и кратности воздухообмена в следующих помещениях:
- в основных функциональных помещениях операционных, послеоперационных, родовых, палатах интенсивной терапии, онкогематологических, ожоговых отделениях, ФТО, помещениях для хранения сильнодействующих и ядовитых веществ, аптечных складах, помещениях для приготовления лекарственных средств, лабораториях, отделении терапевтической стоматологии, специальных помещениях радиологических отделений и в других помещениях, в кабинетах, с использованием химических и других веществ и соединений, могущих оказывать вредное воздействие на здоровье человека - 1 раз в 3 месяца;
- инфекционных, в т.ч. туберкулезных больницах (отделениях), бактериологических, вирусных лабораториях, рентгенкабинетах - 1 раз в 6 месяцев; - в остальных помещениях - 1 раз в 12 месяцев.
Для обеззараживания воздуха и поверхностей помещений в лечебных учреждениях должно применяться ультрафиолетовое бактерицидное излучение с использованием бактерицидных облучателей, разрешенных к применению в установленном порядке.
Методы применения ультрафиолетового бактерицидного излучения, правила эксплуатации и безопасности бактерицидных установок (облучателей) должны соответствовать гигиеническим требованиям и инструкциям по применению ультрафиолетовых лучей.
Оценка микроклимата проводится на основе измерений его параметров (температура, влажность воздуха, скорость его движения, тепловое излучение) на всех местах пребывания работника в течение смены.